DOE/NASA CONTRACTOR REPORT

DOE/NASA CR-150748

SOLAR HEATING AND COOLING SYSTEM FOR AN OFFICE BUILDING AT REEDY CREEK UTILITIES

Prepared by

Reedy Creek Utilities Company, Inc. P. O. Box 40 Lake Buena Vista, Florida 32830

Under Contract DOE No. EX-76-C-01-2401

Monitored by

National Aeronautics and Space Administration George C. Marshall Space Flight Center, Alabama 35812

For the Department of Energy

ΪŤ.

Ŀ,

(NASA-CR-150748) SOLAR PFATING	AND COCLING	N78-32543
SYNTE FOR AN OFFICE BUILDING A	T. REEDY CREEK	•
UTILITIES (Reedy Creek Utilitie	s Co., Inc.)	Unclas
213 p HC A10/MF A01	CSCL 10A	×44 30287

U.S. Department of Energy

NOTICE

This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agents the United States Department of Energy, the United States National Aeronautics and Space Administration, nor any federal employees, nor any of their contractors, subcontractors or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represent that its use would not infringe privately owned rights.

TECHNICAL REPORT STANDARD TITLE PAGE				
1. REPORT NO. DOE/NASA CR-150748	2. GOVERNMENT ACCESSION		3. RECIPIENT'S CA	
4. TITLE AND SUBTITLE Solar Heating and Cooling System Reedy Creek Utilities	n for an Office Building	; at	5. REPORT DATE August 1978 6. PERFORMING OR	
7. AUTHOR(S)	•		8. PERFORMING ORG.	ANIZATION REPORT #
9. PERFORMING ORGANIZATION NAME AND AD			10. WORK UNIT NO.	
Reedy Creek Utilities Company, P. O. Box 40	Inc.		11. CONTRACT OR G	RANT NO.
Lake Buena Vista, Florida 3283	30		DOE No. EX-76-C-01-2401	
12. SPONSORING AGENCY NAME AND ADDRESS		· · · · · · · · · · ·	13. TYPE OF REPORT	& PERIOD COVERED
National Aeronautics and Space			Contractor Rep	port
Washington, D. C. 20546			14, SPONSORING AG	ENCY CODE
15. SUPPLEMENTARY NOTES The Project Manager for Daniel E. Henry, Marshall Spac	this work was Don F. e Flight Center, Alaba	Seeley of R na, was the	eedy Creek Util e technical mana	ities. Mr. ager.
This final report describes in detail the solar energy system installed in a new two-story office building at the Reedy Creek Utilities Company, which provides utility service to Walt Disney World at Lake Buena Vista, Florida. The solar components were partly funded by the Department of Energy under Contract EX-76-C-01-2401, and the technical management was by NASA/George C. Marshall Space Flight Center. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The collector is a modular cylindrical concentrator type with an area of 3.840 square feet. The storage medium is water with a copacity of 10,000 gallons hot and 10,000 gallons chilled.				ce to Walt anded by the ement was oling, and with an area
17. KEY WORDS	18. DIS	RIBUTION STA	EMENT	
		classified-		
	WILL Mgr,	<i>Lux "LL</i>	Front Show OOKSBANK, JR	Project Office
19. SECURITY CLASSIF. (of this report)	20. SECURITY CLASSIF, (of th	s page)	21. NO. OF PAGES	22. PRICE
Unclassified	Unclassif	ed	179	NTIS

For sale by National Technical Information Service, Springfield, Virginia 22151

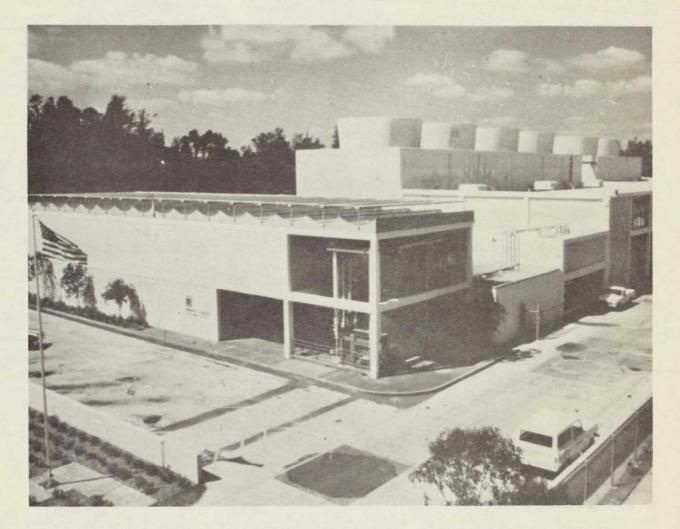
WHELEDING PAGE BLANK NOT FALLE

-

.

TABLE OF CONTENTS

I.	Introductionl
II.	Summary of Project Information5
III.	System Schematic Diagram7
IV.	Construction8
v.	Modes of Operation10
VI.	Description of the Data Acquisition System12
VII.	Costs
VIII.	Performance to Date18
IX.	Recommendations for Concept Development21
х.	Conclusions23
APPEND	IX A - Interim Performance Criteria Certification
APPEND	IX B - Sequence of Operation
APPEND	IX C - Building Drawings
APPEND	IX D - Solar Component Drawings
APPEND	DIX E - Instrumentation Program and Components List
· APPEND	DIX F - Solar Acceptance Test
APPEND	IX G - Operation and Maintenance Manual

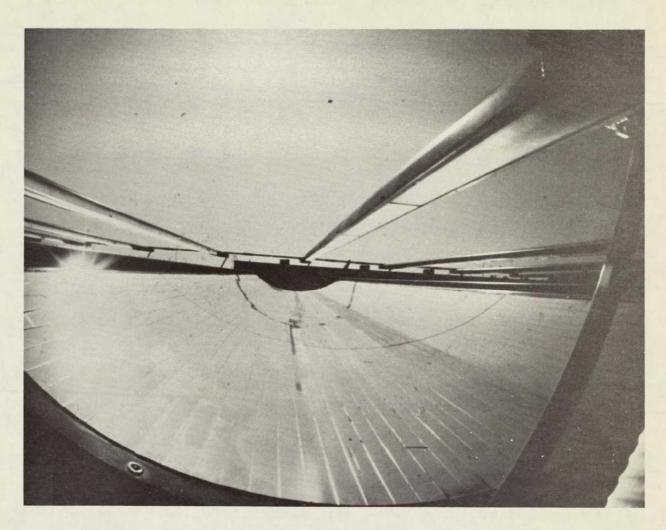

iii

•

BCEDING FAGE BLANK NOT FLAND

Solar Office Building Reedy Creek Utilities Co., Inc. WALT DISNEY WORLD

ORIGINAL PAGE IS OF POOR QUALITY


The Solar Powered Office Building at WALT DISNEY WORLD

I. INTRODUCTION

In November 1977, the utility company servicing WALT DISNEY WORLD put into operation a new two-story office building, specifically designed for a unique solar energy system. Solar energy powers air conditioning, space heating and potable hot water supply. The solar collectors are the roof

of the building. They are horizontal parabolic mirrored troughs which focus on tracking absorbers, moving in one dimension, and filled with water. There is dual storage, 10,000 gallons of hot water and 10,000 gallons of chilled water. The chiller is a commercially available 25-ton lithium bromide absorption unit and utilizes an existing cooling tower system as the heat sink. The building has 5,625 square feet of air conditioned space and the collector area of the roof is 3,840 square feet. There is no redundant nor auxiliary energy system for space heating or hot water. There is a connection to the utility company's chilled water distribution system as the alternate cooling mode. The building was built with the support of the Department of Energy of the United States as one of those selected in the November 1975 PON submissions for space heating and cooling of commercial buildings. The system is highly instrumented as part of the National Solar Data Program. Performance to date has been equal to or exceeded design criteria.

ORIGINAL PAGE IS

A mirrored roof panel with collector bars in focus. The flexible tube contains both supply and return lines.

Concept

AAI Corporation proposed that the roof be shaped in parabolic troughs to focus solar energy on collectors, or conversely that the normal roof be omitted from a building and that the collector panels serve as the weatherproofing. This would cut the cost of the actual building construction and make solar energy more economical. Florida, as the most southern

of the mainland states, uses four percent of its energy for space heating, 18 percent for air conditioning, the reverse of the average in the United States. The collectors as the roof, are most efficient when the sun is directly overhead which is when air conditioning demand is the greatest. With modification, parabolics could be angled or pitched on the roof of the building at other latitudes to optimize the collector angles. The system was designed to be of modular components that could be mass-produced. The solar system roof was integrated into the architecture of the building. The system was optimized for a weekly cycle, that is, collect solar energy seven days a week and normally use the office spaces on a five-day schedule. No redundant heating or hot water were to be provided, only solar, since there would be a sizable excess of energy collected during the heating season. There would be a redundant cooling system for long periods of cloud cover. An energy efficiency cycle of controlled building louvers is incorporated in the design and does increase efficiency to a degree but would be even more effective in more northern climates. A major purpose of the building was to showcase or demonstrate a solar system and, therefore, the building was specifically designed so that all major components would be clearly visible and that the mechanical features, piping, tanks, pumps, etc., would be color coded to facilitate understanding the temperatures in any given position, e.g., the hot water storage tank is red; cold water lines, blue; and warm water, pink.

-4-

II. SUMMARY OF PROJECT INFORMATION

Latitude:

Avg. Insolation

Owner Builder:	Reedy Creek Utilities Co., Inc. Subsidiary of Walt Disney Productions
Designer:	Architectural - WED Enterprises, Glendale, California Mechanical - Sudtell Engineering, Glendale, California Solar System - AAI Corporation, Baltimore, Maryland
Contractor:	Buena Vista Construction Co.
DOE Technical Management:	NASA Marshall Space Flight Center, Alabama
Operational Date:	November 1977
Building:	Type - General Office Area - 5,625 square feet (522.58m ²) conditioned
Location:	WALT DISNEY WORLD, P. O. Box 40,

WALT DISNEY WORLD, P. O. Box 40, Lake Buena Vista, Florida 32830

28.4°N

Climatic Data

Degree Days	Heating 733	Cooling 3226
Avg. Temp. (°F)	Winter 61.1 (16.17°C)	Summer 75.3 (24.05°C)

Winter 1162.35 Btu/Ft/Day

Summer 1752.75 Btu/Ft/Day (315 Langleys/Day) (475 Langleys/Day)

Solar Energy System

Manufacturer: AAI Corporation, Baltimore, Maryland Application: Heating - 100% Cooling - 80% Hot Water - 100%

Collector

Type:	Modular	cylir	ndrica	1 concentrator
Area:	3,840 s	quare	feet	(356.75m ²)

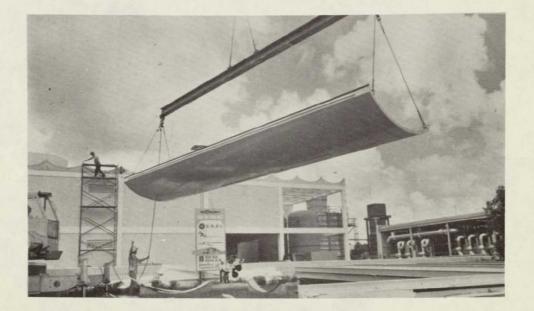

Storage

Type: Water

Capacity: 10,000 gallons hot (37,854 liters)

10,000 gallons chilled

ORIGINAL PAGE IS

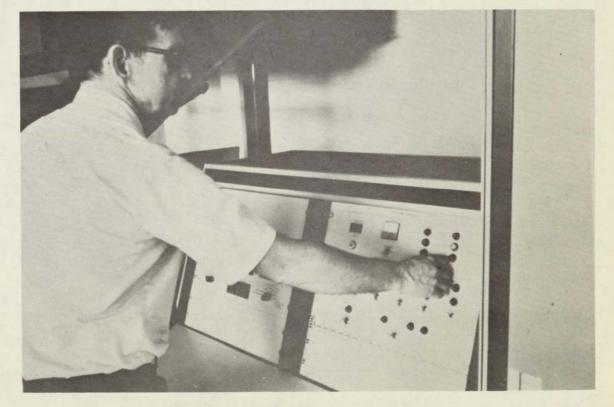

-7-

AAI Corporation designed and manufactured the solar components in Cockeysville, Maryland. The AAI parabolic roof panels are eight feet on the arch, seven and one-half feet on the cord, 32 feet long. They are a sandwich of aluminum, poly isocyanurate foam, aluminum, mastic and mirror. They are shipped with lifting eyes. They include stiffeners on which can be hung lighting, air ducts or sprinklers. They are oriented in an east-west line. The saddles which support the parabolic panels fit on top of the building wall, serve as the interface, provide appropriate structural tie, transmit lateral loads and provide joint sealing. Saddles were shipped in 30-foot lengths. The collector bar or receiver is made of a 36-foot long aluminum extrusion which serves as the structural backbone and weather cover. Inside is a grooved or mechanically selective aluminum plate which is the collector plate and is painted with black epoxy paint. Copper tubes are swaged to the collector plate, with a water white tempered low iron glass covering the plate. The 16 collector bars are each supported at their ends by rocker arms, and are connected horizontally by tie bars or struts forming a parallelogram. Tie bars are adjustable between collectors. The entire system is kept in focus by an electric eye sensor and an electric motor driving a screwjack activator which moves the absorbers in the northsouth direction. The electronic control panel was also manufactured by AAI Corporation. Tanks and piping insulation were done by construction contractors on site. Walt Disney

-8-

World Co. used its affiliated company, Buena Vista Construction Co. as the general contractor and subcontracted the more critical parts of work. The building is a concrete frame, concrete block wall, heavily insulated office building with minimum windows. This design, plus the fact the roof is reflecting sunlight, makes it a low energy consumer. Construction proceeded with no problem in matching prebuilt solar panels and saddles to the building.

Construction Start Date - February 1977 Construction Complete Date- October 1977 Solar System Start-Up - October 1977 Solar Acceptance Test - March 1978 Demonstration Period Ends - March 1983



Roof panel being lifted in place.

ORIGINAL PAGE IS DE POOR QUALITY

Display piping for solar system.

Solar control console

V. MODES OF OPERATION

The system has five operating modes and one central control system.

- The first mode is the collection process through hot water storage. The collector focusing does not commence until there is sufficient light intensity on the photoelectric cells to make the expenditure of energy in moving the collector worthwhile. When that occurs, the collector bars are brought into focus over the parabolic trough mirrors. When the absorber plates in the collector bar reach a temperature 20°F higher than the temperature of the water at the bottom of the hot water storage tank, the circulating pump is activated. This loop is from hot water storage to collector and return.
 - The second mode is space heating. When the building temperature falls below the setting of the thermostat a pump is activated to move hot water from the top of the storage tank into the air handler and return. There is no other system to heat the building.
 - The third mode is for potable hot water. When a hot water tap is opened, domestic water flows through a heat exchanger in the side of the solar hot water storage tank to a wash basin. There is no other hot water heating system.

-10-

- The fourth mode is the production of chilled water. When the water at the bottom of the chilled water storage tank is above 45°F and when the water at the top of the hot water tank is above 180°F, hot water is circulated through the absorption chiller and condenser water from the cooling tower is cycled through the chiller. Water from the cold water storage tank is then cycled from the cold tank through the chiller and return. The chiller remains in operation until the bottom of the cold tank reaches 45°F or until the hot water tank goes below 165°F, whichever occurs first.
- The fifth mode is space cooling. This again is activated when the room temperature in the building gets warmer than the thermostat's setting, at which time chilled water is pumped from the bottom of the storage cold water tank to the air handler and return. When the bottom of the cold water storage tank exceeds 57°F and building temperature exceeds 80°F, the water produced from solar energy is stopped. The valve to permit auxiliary cooling by the flow of chilled water from the Central Energy Plant through the air handler is then opened.

VI. DESCRIPTION OF THE DATA ACQUISITION SYSTEM

In order to obtain information necessary for evaluation of the performance and operation of the solar heating system throughout the year, 45 sensors were installed within the system. These sensors were furnished by the government and installed at government expense in accordance with the document, "SHC-1006, August 4, 1976; Instrumentation Installation Guidelines for the National Solar Heating and Cooling Demonstration Program." In Table 1, each sensor is listed by a code designation and by the parameter measured. The number sequence in the code indicates the data groups in accordance with the following table:

]	Number Sequence	Data Group
ORIGINAL PAGE IS OF POOR QUALITY		climatological collector thermal storage domestic hot water space heating space cooling building/load
<u>0</u>	600 to 699	space cooling building/load

Each sensor provides data to a Site Data Acquisition Subsystem (SDAS) every five minutes around the clock. The SDAS digitizes the data and stores it on tape. Once a day the data is sent by telephone to an IBM facility in Huntsville, Alabama, where it is reduced. Monthly reports are prepared, one of which is sent to Reedy Creek Utilities Co., Inc.

The monitoring system will permit the government to determine the following kinds of information:

-12-

- Savings in conventional energy resulting from the use of solar energy for heating and/or cooling.
- Portion of the total heating and/or cooling load supplied by the solar energy.
- Efficiency of the system in converting solar radiation into useful thermal energy.
- Thermal performance and reliability of major subsystems or components over the demonstration period.

Table 1 describes each sensor in terms of its general location and the parameter that is being measured. The specific location of each sensor can be found on Figure No. 1.

Table l

.

Instrumentation for Reedy Creek Utilities

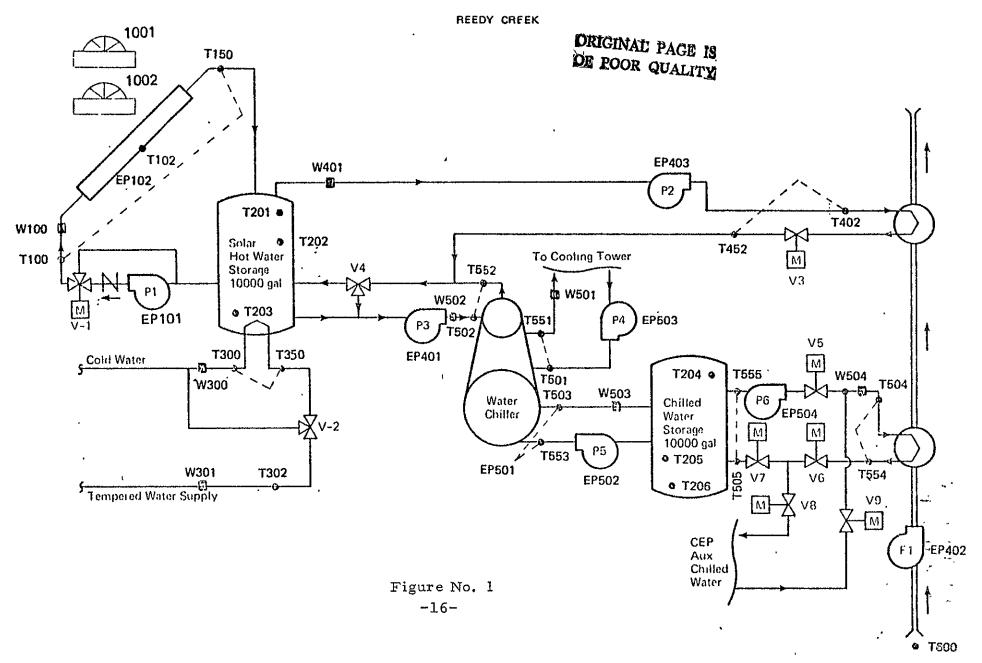

Designation	Measurement
A. Temperature	
T001	Outdoor Ambient Temperature
T100	Collector Inlet Temperature
T150	Collector Outlet Temperature
T102	Collector Surface Temperature
T201	Hot Storage Tank Top Temperature
T202	Hot Storage Tank Middle Temperature
T203	Hot Storage Tank Bottom Temperature
T204	Cold Storage Tank Top Temperature
T205	Cold Storage Tank Middle Temperature
T206	Cold Storage Tank Bottom Temperature
Т300	Domestic Hot Water Heat Exchanger Inlet Temperature
т350	Domestic Hot Water Heat Exchanger Outlet Temperature
T302	Domestic Water Supply Temperature
T402	Hot Load Supply Temperature
т452	Hot Load Return Temperature
т501	Arkla Condenser Water Inlet Temperature
T551	Arkla Condenser Water Outlet Temperature
T502	Arkla Generator Water Inlet Temperature
T552	Arkla Generator Water Outlet Temperature
T503	Arkla Chilled Water Outlet Temperature
т553	Arkla Chilled Water Inlet Temperature
T504 ·	Chilled Water Supply Inlet Temperature
Т554	Chilled Water Coil Outlet Temperature
T505	Chilled Water Tank Inlet Temperature from Cooling Coil
T555	Chilled Water Tank Outlet Temperature to Cooling Coil
T600	Return Air Temperature
B. Power	-
EP101	Collector Pump Power (PHWA-4ZE)
EP102	Tracker Motor Power
EP401	Hot Water Supply Pump Power (PHWA-5ZE)
EP402	Internal Air Recirculating Fan Power (AH-6ZE)
EP403	Hot Water Coil Supply Pump Power (PHWA-ZE)
EP501	Arkla Chiller Operating Power (CH-10ZE)
EP502	Arkla Chilled Water Pump Power (CH-10ZE)
EP503	Condenser Water Pump Power (PCW-10ZE)
EP504	Chilled Water Coil Pump Power (PCHA-3ZE)

Table 1 (Continued)

-

Designation		Measurement		
c.	Flow			
	W100 W300 W301 W401 W501 W502 W503 W504	Collector Array Flow Rate Domestic Hot Water Solar Flow Rate Domestic Hot Water Supply Flow Rate Hot Water Coil Supply Flow Rate Arkla Condensing Water Flow Rate Arkla Hot Water Flow Rate Arkla Evaporator Water Flow Rate Chilled Water Supply Flow Rate		
D.	Insolation			
	1001 1002	Collector Plane Total Insolation Collector Plane Diffuse Insolation		

T001 Outside Amb

VII. COSTS

PROJECT COSTS

	Estimated Cost	Actual Cost	
Building	\$352,000	\$369,000	
Solar Energy System	459,662	654,071	
Instrumentation	12, 843	16, 361	
Display Panel	9, 570	10,000*	
Total Project Cost	\$834,075	\$1,049,432*	
DOE Funding to Date			
Solar Energy System	\$373, 303		
Instrumentation	12, 843		
Display Panel	9,570		
	\$395,	716	

The project as a prototype had the usual first-of-a-kind cost control problems. Panels which lend themselves to production line techniques, were hand-built. In addition, design was pointed at high quality, long life components and showcasing of all solar components for public visibility. Proposals for major cost reduction are described in Section IX.

* Final actual costs of display panel not yet know.

.

VIII. PERFORMANCE TO DATE

The first month of data collection was March 1978 and resulted in many adjustments in the data collection as well as the mechanical part of the solar system itself. The first month of reasonable data is for April 1978. Those results:

 Collector and hot water storage mode (167°F to 226°F actual):

> Insolation, total incident 232 MBtu Collected energy 68 MBtu Efficiency total 29% Efficiency during collector 37% operation

> Electrical operating energy 1.8 MBtu Storage losses from the tank 12.3 MBtu

- Hot storage efficiency 82%
 - Note: The 12.3 MBtu storage loss includes the energy used to heat the potable hot water for the building.

Potable hot water mode:

Consumption is so small that installed meters were not accurate. Estimated demand was .4 MBtu for the month which was included as a hot water storage loss.

Space heating mode:

With minor exception, the building was heated throughout a below normal temperature winter while equipment was being adjusted.

-18-

No heating demand was recorded after data collection was inaugurated.

No problem with 100% solar heating foreseen. Chilled water production mode:

Solar energy consumed	53	MBtu
Chilled water produced	8	MBtu
To cooling tower	38	MBtu
To atmosphere	12	MBtu
Overall indicated COP	.15	

Note: Because of sensor problems in the data collection system, these figures are highly suspect. Control temperatures of supply hot water and produced chilled water have been changed to reduce cycling of chiller. Also, a condenser water supply problem has been corrected. Latest COP's measured in field range from .4 to .7.

Space cooling mode:

Solar energy consumed	53	MBtu
Total heat removed	7.6	MBtu
Solar energy chilling	5.4	MBtu
Auxiliary chilling	2.2	MBtu

Cold storage efficiency 93.4% To date the National Solar Data System has been very beneficial to adjusting our facility mechanically and operationally. Although accuracy of initial data above is suspect in several instances, we are confident the present program of correcting deficiencies will produce a very accurate measuring of performance.

IX. RECOMMENDATIONS FOR CONCEPT DEVELOPMENT

Experience to date indicates that this concept has promise of acceptable performance. Costs to date are not acceptable. Walt Disney organizations and AAI Corporation separate and joint reviews indicate sizable savings possible, as follows:

- Use building industry technology in solar system fabrications, e.g.:
 - Replace aluminum foam panels with precast, prestressed lightweight concrete.
 - Use tilt up wall construction with saddles precast, or incorporate saddles in precast panel.
 - Cast units in local precast plants with mirrors added either as sagged glass sheets or pre-positioned strips placed much as tile work in residential construction.
- Develop foam-in-place for receiver insulation and simplify cover glass assembly. Possibly redesign receiver drive from rocker arm to an overhead track with roller supports, or use sleeve bearings in lieu of roller bearings or rocker arms.
- In building design:
 - Use solar panels as diaphragm for lateral loads.
 - Add windows on low solar sides to reduce lighting demand.
 - Install insulation and vapor barrier on exterior of building.

-21-

- In mechanical design:
 - Place solar and HVAC in center of building.
 - Eliminate showcasing features, e.g., place storage in most economical position.
- Use micro processor controller now available in lieu of conventional electronics.

System technical improvements for increased efficiency:

- Utilize low temperature Rankine driven chiller to improve COP. With storage available in this project, a three-ton chiller would satisfy the 15-ton maximum demand.
- Add a cycle to utilize night low temperatures to charge chilled storage. This is a small modification of existing air handler and appropriate control logic for chilled water loop.

X. CONCLUSIONS

The office building is an addition to an existing central energy plant of fairly sophisticated systems. The personnel who maintain the solar facility also maintain the jet engine co-generation system, chiller plant, high temperature hot water distribution system, high voltage electrical generation system, instrumentation and computer systems serving WALT DISNEY WORLD. They were already in the prototype business which makes maintenance of the facility relatively easy. Tuning and learning how to operate has been an interesting process and only now is coming to a satisfactory point. The longest learning experience has been the operation of the absorption chiller to minimize cycling losses, to de-bug the related condenser water system, and to realize the .6 design coefficient of performance of the chiller. Modification of the sun positioned sensor was necessary because of moisture and overheat problems.

This solar prototype will meet its design criteria of 100% heating and hot water and over 80% chilling. The concept is worth pursuing in order to eventually obtain cost effective-ness.

APPENDIX A

INTERIM PERFORMANCE CRITERIA CERTIFICATION

ERDA CONTRACT NO. E(49-18)2401 INTERIM PERFORMANCE CRITERIA CERTIFICATION

DEMONSTRATION C	ONTRACTOR Ree	ly Creek Utility	Company	
SYSTEM LOCATION	Walt Disney World,	Lake Buena Vist	a, Florida	 -
System Type	AAI Corp. Modular	Solar Roof		

CERTIFIED BY morized Rez. DATE 2/15/77 Ł Ŭ 4/24/18

- Evaluate System for each IPC requirement listed on I.P.C. Certification
 Sheets. All Requirements are to be in accordance with MSFC Document
 No. 98M10001, dated February 28, 1975.
- II. Check each Requirement Status
 - Yes Meets IPC Requirement
 - No Does not meet IPC Requirement
 - N/A Requirement not applicable
- III. List IPC Requirement Evaluation Method utilized

Analysis 👃

Test

.

Inspection

Demonstration

Other 1

IV. All IPC Requirements which are not met shall be defined and recorded.

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

· Line Linear

i		IPC	IPC	$ \cdot \rangle$	EETS I	PC	EVALUATION	
: -		REQUIREMENT	OY 54	VES	I.NO	<u>N/:</u>	METHOD	COMMENTY
•	ç	H and HC System	1.1 -	x				
	¢	Heating Design Temperature	1.1.1	x			Analysis	
	¢	Cooling Design	1.1.2	x			Analysis	• }
	Ο.	Relative Humidity and Water Vapor Pressure	1.1.3	x			Analysis	-
	Q	Solar Contribution	1.1.4	x			Analysis	 ,
• <u>}</u>	9	HW System/Subsystem Performance	1.2				Analysis	i
	0	Draw and Temperature Design Cutput	1.2.1	x		,	Analysis	
•	6	Non-tap Temperature Design Output	1.2.2			x		
6	>	Solar Contribution	1.2.3	x			Analysis	
0		Collector Performance	1.3	-			-	
0		Collector Efficiency	1.3.1	x			Analysis & Test	
9	•	Thermal Storage Performance	1.4	x.				
0	•	Storage Capacity and Rate	1.4.1	X			Analysis	· • •
•		Habitability of Occupied Spaces	1.5	x				1 2 7
		Heat or Humidity Transfer Effects	1.5.1	x			Analysis	; ;
0		Energy Transport . Efficiency	1.5	x		-	 	-
•		Thermal Losses and Electrical Power	1.6.1	x			Analysis ⁻	
0	(Control	1.7	x				1
					l.			

OF POOR QUALITY					
IPO REQUIREMENT	IPC PARA.	M YES	EETS IPC	EVALUATION METHOD	COMM
 Installation and Maintenance 	1.7.1	x		Analysis	
e Manual Adjustment	1.7.2	x		Analysis	
 Inhabited Space Temperature Control 	1.7.3	x		Analysis	
• Hot Water Temperature	1.7.4		x	· · · · ·	No separate storage tank
 Auxiliary Energy 	1.8	x	•		Siviage laun
• Design Heat Loads	1.8.1	x		Analysis	
 Design Cooling Loads 	1.8.2	x		Analysis	
• Impairment of Operation	1.8.3	x		Analysis	a - No and a second
System Design Conditions	2.1	X .			
Equipment Capabilities	2.1.1	· X		Analysis	
Noise or Erosion- Corrosion	2.1.2	x	-	Analysis & Inspect	tion
• Operating Conditions	2.1.3	x,		Analysis	
Fluid Flow in Collectors	2.1.4	x		Analysis	1
Entrapped Air	2.1.5	x		Analysis	[, [
Thermal Expansion of Fluids	2.1.6	X.		Analysis	
Pressure Drops	2.1.7	x	-	Analysis	· · ·
Condensate Removal	2.1.8	x		Analysis	
Mechanical Stresses	2.2	x		ORIGI OE PC	NAL PAGE IS OR QUALITY
Vibration Stress Lovels	2.2.1	x		Analysis	OR QUALITY
Vibration From Moving Parts	2.2.2	x		Analysis	* I } }
Water Hammor	2.2.3	x		Analysis	

SOLAR ENERGY SYSTEMS PERFORMANCE CRITEKIA CON'T.

	IPC	IPC	. <u>M</u>	EETS IPC	EVALUATION	
÷	REQUIREMENT	PARA.	YES	NO N/		COMMENT
٥	Vacuum Relief Protection	2.2.4	x	•	Analysis & Inspection	·. ·· · · · · · ·
0	Thermal Changes	2.2.5	x	•	Analysis	
. 0	Flexible Joints	2.2.6	x		Analysis	
Ø	Leakage Prevention	2.3	x		Analysis	
	Pressure Test: Nonpotable Fluids	2.3.1	x		Test & Inspection	-
0	Pressure Test: Potable Water	2.3.2 .	x	P	Test & Inspection	
0	Air Transport Systems	2.3.3	·X		Analysis	
0	Collector Adjustments	2.4	x		Analysis & Inspection	·
9	Orientation and Tilt	2.4.1	x		Analysis & Inspection	
0	Mutual Shadowing	2.4.2	. X		Analysis & Inspection	
9	Subsystem Isolation	2.5	x			
0	Shutdown in Multiunit - Facilities	2.5.1	x		Review & Analysis	
0	Heat Transfer Fluid Quality	2.6	x	-		
9	Liquid Quality	2.6.1	x .		Review & Inspection	
¢	Air Quality	2.6.2	x		Analysis & Inspection	
0	Fluid Treatment	2.6.3	x		Analysis & Inspection	
9	Freezing Protection	2.5.4	x		Analysis & Inspection	
•	Piping Supports	2.7	x			
9	Applicable Plumbing Standards	2.7.1	x		Analysis & Inspection	
	Excessive Pressure and Temperature Protection	2.8	x		Analysis & Inspection	-
	Rollef Valves and Vents	2.9.1	x		Analysis & Inspection	

SOLAR ENERGY SYSTEMS PERFORMANCE ORITERIA CON'T.

	IPC	IPO	<u>.</u> M	FETS I	P C	- EVALUATION	•
1160	REQUIREMENT	i PARA.	YES	I NO	N/A	METHOD	0000
8	Structural Design Basis	3.1	x				
0 ,	Service Loads	3.1.1	x			Analysis & Test	l -
e	Failure Loads and Load Capacity	3.2	x			Analysis & Test	4
8	Ultimate Load Combinations	3.2.1	x			Analysis & Test	• •
9	Ice Loads	. 3.2.2			x		
Ø	Vehicular Loads	3.2.3			X	ORIGINAL OF POOR G	PAGE IS
6	Load Capacity	3.2.4	X			Analsyis	: · · · · · · · · · · · · · · · · · · ·
0	Damage Control	3.3	x			à	· .
9	Resistance to Damage	3.3.1	x			Analysis	ļ
9	Cyclic Loads	3.4	x			Analysis	i
0	Deflection Limitations	3.4.1	x		-	Analysis	
6	Cutting of Structural Elements	3.5	x		•	-Analysis	i
9	Design Provisions	3.5.1	x			Analysis	5 •
0	Creep and Residual Deflection	3.6	x .				· · · · · · · · · · · · · · · · · · ·
0	Deflection Limitations	3.6.1	·x			Analysis -	[]
0	Hail Resistance	3.7	x		•		, - ; ;
Ø	Hail Size and Loading	3.7.1	x			Analysis .	ι 1
0	Constraint Loads	3.8	x				!
ø	Foundation Settlement: Contraction and	• - •		a , 1968 - 646 			
	Expansion	3.8.1	x			Analysis	
0	Ponding Conditions	3.9	x		٦.		i
0	Désign Provisions	3.9.1	x	1	-	Analysis-	-

SOLAR ENERGY SYSTEMS PERFORMANCE CRITERIA CONTT.

	IPC	IPC	i N	AEETS I	PC	EVALUATION		
	REOUTREMENT	PARA.	YES	1 110	N/A	LIETHOD		
. e	Plumbing and Electrical Installation	4.1	x					
¢.	Plumbing Codes and Standards	4.1.1	x			Aralysis		
ø	Electrical Codes and Standards	4.1.2	X			Analysis		
6	Fail-Safe Controls	4.2	x		-			
6	System Failure Prevention	4.2.1	x	-		Analysis		
0	Automatic Pressure Relief Valves	4.2.2	x			Analysis		
0	Fire Safety	4.3	x					
0	Applicable Fire Standaras -	4.3.1	x			Analysis	1 ! {	
0	Penetrations Through Fire-Rated Assemblies	4.3.2	x		-	Analysis	, , ;	
0	Toxic and Flammable . Fluids	4.4			x			
0	Provision of Catch Basins	4.4.1			x		<u>.</u>	
Ø	Detection of Toxic and Flammable Fluids	4.4.2	•		X			
0	Safety Under Emergency Conditions	4.5	x			Analysis		
o '	Emergency Egress and Access	4.5.1	x		÷	Analysis		
0	Identification and Location of Controls	4.5.2	x			Analysis :	- •.	
9	Protection of Water and Circulated Air	4.6	x					
9	Contamination by Materials	4.6.1	x	-		Analysis		

- - - - -

SOLAR ENERGY SYSTEMS PERFORMANCE ORITERIA CON'2.

. .

	120	1PC	<u> </u>	2878.	20	: : : : : : : : : : : : : : : : : : :	
and the	REQUIREMENT	<u> </u>	YES		<u>Nra</u>		· · · ·
8	Separation of		-				· · ·
	Circulation Loops	4.6.2	x			Analysis	_ •
0	Backflow Prevention	4.6.3	x	-		Analysis & Inspec	ion
0	Growth of Fungi	4.5.4	X.			Analysis	
0	Excessive Surface Temperatures	4.7	x			ORIG Analysis DE PC	NAL P
8	Protection From Heated Components	4.7.1	x			Analysis	and the second sec
g	Effects of External Environment	5.1	x		-		
0	Solar Degradation	5.1.1	x	-		Analysis, test & in	spection
•	Soil Corrosion	5.1.2			X		•••
	Airborne Pollutants	5.1.3	x			Analysis & test	•
8	Dirt Retention on		1		· .		
	Cover Plate Surface	5.1.4	X			Analysis & test	5
0	Abrasive Wear	5.1.5	x			Analysis & test	•
9	Fluttering by Wind	5.1.6	x			Analysis & test	<i>'</i> •
0				1		-	· • ·
	Pressúre Resistance	5.2	X			401400 I	
	Thermal Degradation	5.2.1	x	-		Analysis & test	
0	Deterioration of Heat Transfer Fluids	5.2.2	x			Analysis & test	
0	Thermal Cycling Stresses	5.2.3	x	.		Analysis & test	
0	Leskage	5.2.4	x	·		Analysis & test	
p .	Deterioration of Gaskets and Sealants	5.2.5	x		9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Analysis & test	
Ð	Transmission Losses Due to Outgassing	5.2.5	X			Analysis & test	
5	Chemical Compatibility of Components	5.3	x	i		Analysis & test	

SOLAR ENERGY SYSTEMS PERFORMANCE CALLMAN - CON'T.

.

Ĩ	. IPC			EEIS IRC	مىسى مەربى ئۆر ئەتتىرىيى رىيان دەر مەربىيە ئىلارلار بىلى ئېسى	
<u> </u>	REQUIREMENT	PARA.	VES			· · · · · · · · · · · · · · · · · · ·
	• Materials/transfer fluid compatibility	5.3.1	x		Analysis & test	n
	 Corrosion of dissimilar materials 	5.3.2	X		Analysis & test	
	 Corresion by leachable substances 	5.3.3	X		Analysis & test	:.
	e - Effects, of decomposition products	5.3.4	x	•	Analysis & test	· ·
-	 Components involving moving parts 	5.4	x	•		1
	• Wear and fatigue	5.4.1	x		Analysis & test	
					· · · · · · · · · · · · · · · · · · ·	
	 Accessibility for maintenance and servicing 	6.1	X			
	 Access for system maintenance 	6.1.1	x		Analysis & test	
	 Access for system monitoring 	6.1.2	x		- Analysis & test	
	 Draining and filling of liquids 	ō.1.3	x .		Analysis & test	
	 Flushing of liquid subsystems 	ō.l.4	·X		Analysis & test	i
	• Filters	6.1.5	x		Analysis & test	1
à	• Water shutoff	6.1.6	x		Analysis	
	• • Installation, operation and maintenance manual	ō.2	x			
	• Installation instructions	6.2.1	X			
	 Maintenance and operation instructions 	6.2.2	x		}· op	n installation, eration & maint. mual was
. i	 Meintenance plan 	6.2.3	x		_ p	repared
	• Replacament parts	5.2.4	x		/	
			ĺ	1	·	

A-10

SOLAR ENERGY SYSTEMS PERFORMANCE CRITINA CON'T.

	IFC · ·	IPC			EVALUATION -	
-	REQUIREMENT	PARA.	YES	NO N/A	METHOD · ·	<u></u>
	Repair and service personnel	6.3	x			· .
	Servicing of H and HC systems	6.3.1	x		Analysis & review	1
	Servicing of HW system	6.3.2	x		Analysis & review	
•	Design	7.1	x			-
	Design-Habitable Facilities	7.1.1	X ·	• 	ORIGINAL	PAGE IS
	Esthetics	7.1.2	x		OE POOR Q	UALITY
0	Materials	7.1.3	x	_	Review	
8 	Passive use of Solar Energy	7.1.4	x		Review	
9	Adequate Space	7,2	x	· · · ·		· · ·
. 0	Solar collector space requirements	7.2.1	x		Review	
æ	Storage	7.2.2	x	1 7	Review	
• <i>,</i>	Interface Between Facility & H and HC Systems	7.2.3	x		Review	
9	Portability	7.2.4		x		•
	Functioning of facility and site	7.3	x		·	
- 0	Space use	7.3.1	x	-	Review	• ••••
0	Shading	7.3.2	x		Review	
. 0	Impact on environment	7.3.3	x		Review	
9	View	7.3.4	x.		Review	• ,
C	Completelity with conventional systems	7.4			· · · · ·	
	Utility compatibility	7.4.1	x		Review	-

SOLAR ENERGY SYSTEMS PERFORMANCE OPITERIA -CONTE:

. . .

. .

	IFC	IPC	X.E	213 19	0		·
	REQUIREMENT	PARA.	-YES		IN/A		
9	Interference with mechanical operation	8.1	. X		· .		
0	Blockage of solar components	8.1.1	X			Analysis	
6	Shading of Collector	8.1.2	x		· · ·	Analysis	بر بر 19 19 م م
	Sensor Location	8.1.3	· * X	-		Analysis	
.	Mechanical and electrical functioning of facility and site	8.2	X		•		
0	Exhaust and venting	8.2.1	x			Analysis & review	
0	Utilities	.8.2.2	x			Analysis & review	· -
Ð	Mechanical and electrical functioning of connections	8.3					
•	Plumbing connection	8.3.1	x	·	· .		· ·
	Electrical connections	8.3.2				Analysis & review	÷
	· · · ·		X	-		Analysis & review	•
	Lightning Protection	8.3.3	X			Analysis & review	•
9	Structural integrity of H, HC and HW systems	9.1	x .				
0	Movement in adjacent structures	9.1.1	x			Analysis	
	Structural integrity of facility	9.2	x		•		÷_ •
Ø	Loads	9.2.1	x	ĺ	í.	Analysis	
Ð	Penatration of structural members	9.2.2	. x		-	Analysis	
0	Structural connections	9.3			1	: 	
ند.	Structural connections	9.3.1	x	1		Analysis	•
9	Brillle components	ə. 3.2	x	, , ;	;	Analysis	
3	Strength and Stiffness	9.2.3	x	, , ,	1	Analysis	
		-	Ì	l	i		

SOLAR ENERGY SYSPEMS PERFORMANCE OFFICE CON P.

.

120	IPC	1 1/2	<u> </u>	~		•
REQUIREMENT_	PARA.	YES		IN/A	METHOD	COMM
 Safety of facility and site 	.10.1	x				-
o Fire	10.1.1	x			Analysis	
• Accidents	. 10.1.2	x			Analysis	
• Buenhildus o d			<u>.</u> 		ORIGINAL	AGE 15
• Durability and reliability of H, HC					OF POOR Q	UALITY
and HW systems	11.1	x				
Vegetation	11.1.1	x		•	Analysis	
• Durability and	•					•
reliability of faciliti and site	es 11.2	x		:	- ==	
• Chemical corrosion	11.2.1	x			Analysis	
• Heat and moisture	11.2.2	x			Analysis	٠
• Exterior penetrations	11.2.3	x		:	Analysis	• :
• Durability and reliability of			-			
connections	11.3	X		ļ	Analysis	
• Material Compatibili	ty 11.3.1	x			Analysis	· . · ···· · · · · · ·
• Maintainability of H			•	;	:	
HC and HQ systems	12.1	X		- -		
• Accessibility ,	12.1.1	x	ł 1	: 1	Analysis & review	•
• Misuse	12.1.2	x			Analysis & review	
 Permanent maintenan accessories 	.ce 12.1.3	x			Analysis & review	
 Maintainability of facility and site 	12.2	x		-	, 	
• Accessibility	12.2.1	x			Analysis & review	
a Ice dams	12.2.2	-	· ·	x	— .	
 Connections 	12.3	x	{			_
> Accessibility	12.3	x		:	Analysis & review	
·.			į .		۲.,۳ 	

SOLAR ENERGY SYSTEMS PERFORMANCE ORTHON, CON'1.

	PC			IPC PARA.	L	ME	EETS I	IPC) · N/A		2752		-	~
<u></u> ?	EQUIREMEN	NI		PARA.		ΞS	i NC) + N/A		MET.	1.3-	•	مربعة معر
e V o	'isual chara f facility a	cteristic nd site	s	13.1		x	•	:	;				
o F	acility			13.1.	1	X			Аг	alysi	s & re	view	r
0 N	leighborhoo	d		13.1.	2	X		. 	Ar	alysi	s & re	view	, ·
•	. • • •	•••		-		-			·	• • •	. ·		
· · · ·	UGINAL PAC F POOR QUA		•			-		ra - Anna Marine Anna - Anna - Anna		•			- <i></i> .
0 Û⊧	F POOR QUI	•							-				
•	· .	•		• •	-		•				•	1	• ,
•									-	, ,	· · ·		•
	• • •	•											
•	10 Mar 10			-	-		-	-		:			
	<i>.</i> .	د		• .				*		•			•
	· · · ·	· •						- ` -		-	. :		•
						•	• •					i	
												•	
-	•	•			;		1				• *	-	
•						-		and the second s		•			

.

APPENDIX B

SEQUENCE OF OPERATION

.

B-1

•

Sequence of Operation

The building solar heating and cooling is activated by three components in the HVAC system: The hot water circulating pump, the chilled water circulating pump and the CEP solenoid valve. These components must obey the following rules:

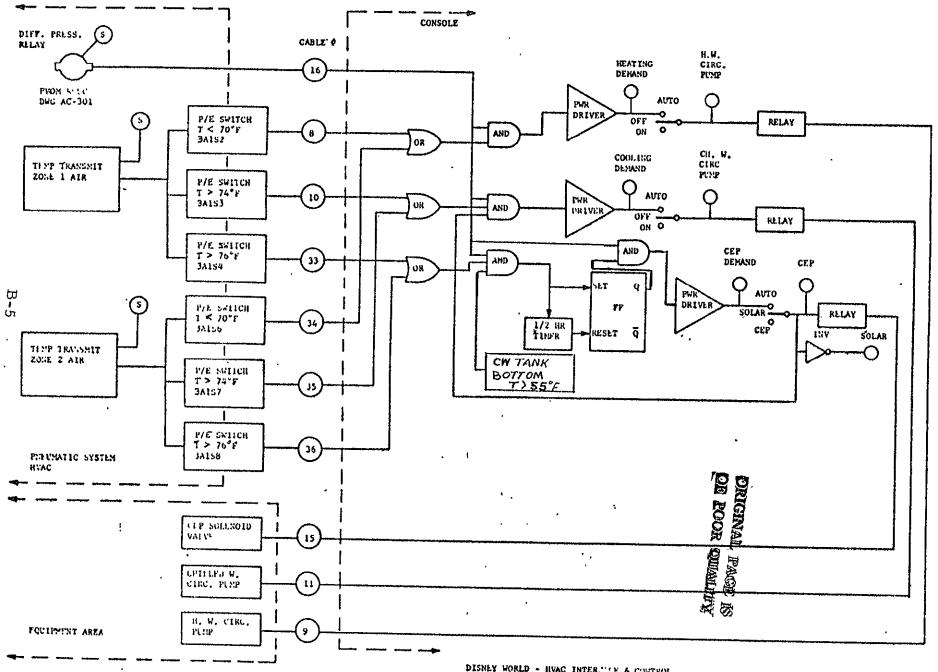
- The hot water circulating pump must be on whenever either of the two zones require heat.
- The <u>chilled water</u> circulating pump must be on whenever either zone requires cooling and if the solar chilled water supply is adequate to control the two zones.
- The <u>CEP solenoid valve</u>, which controls four pneumatic valves in the chilled water system,
 will be energized whenever the solar chilled water supply is inadequate to maintain the two zones cool and chilled water tank bottom temperature greater than 55°F.
- When the building is unoccupied no heating or cooling will be provided.
- The cooling water and heating water are not on at the same time except when one zone calls for heating while the other zone calls for cooling.

The accompanying block diagram illustrates the logic for implementing these rules. A number of decision sensors are required in the HVAC system to provide inputs to the logic.

B-2

The first of these is a differential pressure switch which indicates that the fan in the air handling unit is on. This fan is controlled by timers and is an indication of building occupancy. The remaining sensors are P/E switches associated with the zone temperature sensors. Six such P/E switches are required with three on each zone thermostat pneumatic output The heating signal, from each zone thermostat, consists line. of a P/E switch closure whenever the temperature in the zone is less than 70°F. The cooling signal, from each zone thermostat, consists of a switch closure whenever the temperature in the zone is greater than 78°F. The CEP signal, indicating that solar chilled water is insufficient to provide adequate cooling, is a third P/E switch closure whenever the temperature in the zone is greater than 80°F. The P/E switches should all be adjustable over the range of at least 60° to 80°F so that these setpoints can be changed to accommodate building comfort.

The block diagram indicates how the sensor signals are used to generate control signals for the three output components. No output signals are provided if the differential pressure switch on the fan does not indicate fan operation. The circulating pumps are on if either zone requires heating or cooling. If insufficient cooling capacity is available, as indicated by a zone temperature rise above 80°F, the CEP valve is activated if chilled water tank bottom is greater than 55°F. This condition is held for a minimum of 30 minutes. The CEP chilled water will reduce the zone temperature below


B-3

76°F. During this period the chilled water circulating pump will be off. At the end of 30 minutes the system will revert back to the solar mode. If the zone temperature again goes above 80°F, the 30 minute CEP water cycle will be repeated.

The HVAC components not mentioned above will all be operating independently of the solar system and are not included in this interface. This encompasses such things as the zone dampers, the fresh air mixing system, etc., and the controls for these components.

The control inputs, to the solar equipment cabinet, from the P/E switches, and the fan differential pressure are switch closures not tied to any other circuits. A wire pair from each of the seven inputs is connected to the solar equipment console. The outputs to the three controlled components is 115 volt 60 Hz power, capable of actuating motor starters or the CEP solenoid valve.

B-4.'

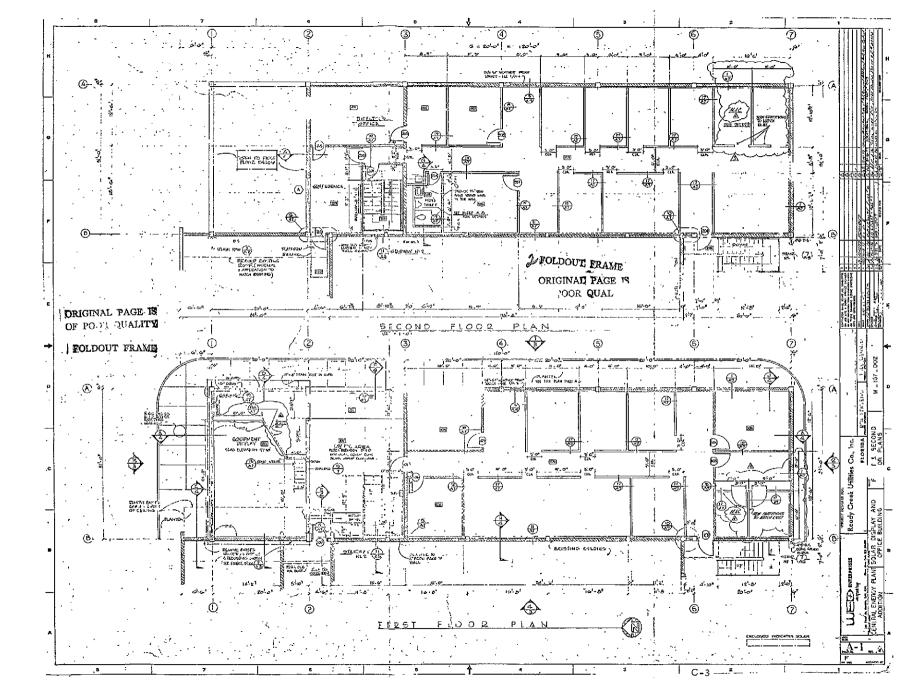
DISNEY WORLD - HVAC INTER." (E & CONTROL

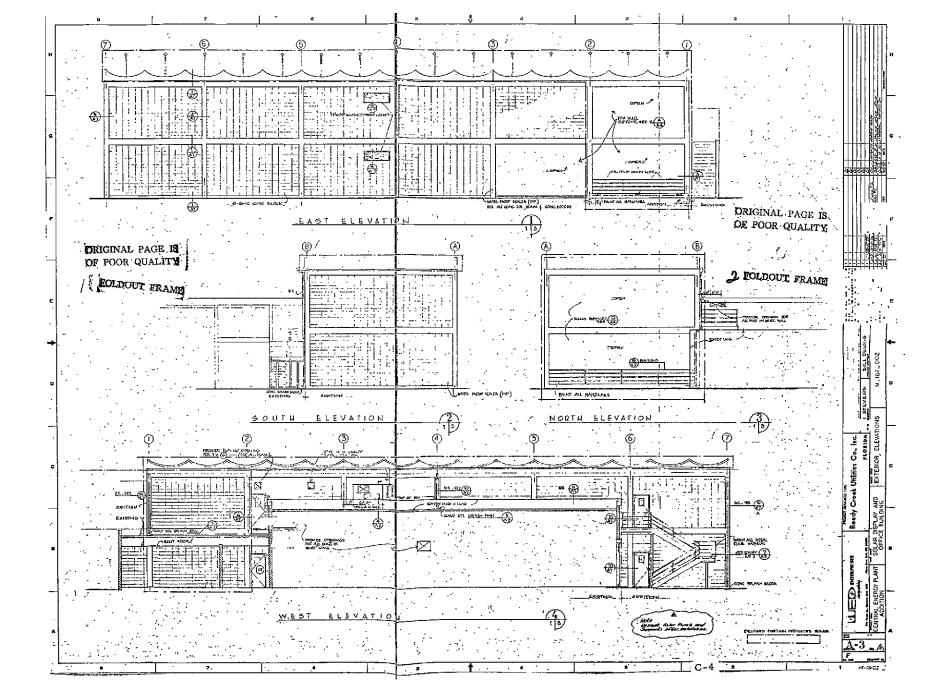
,

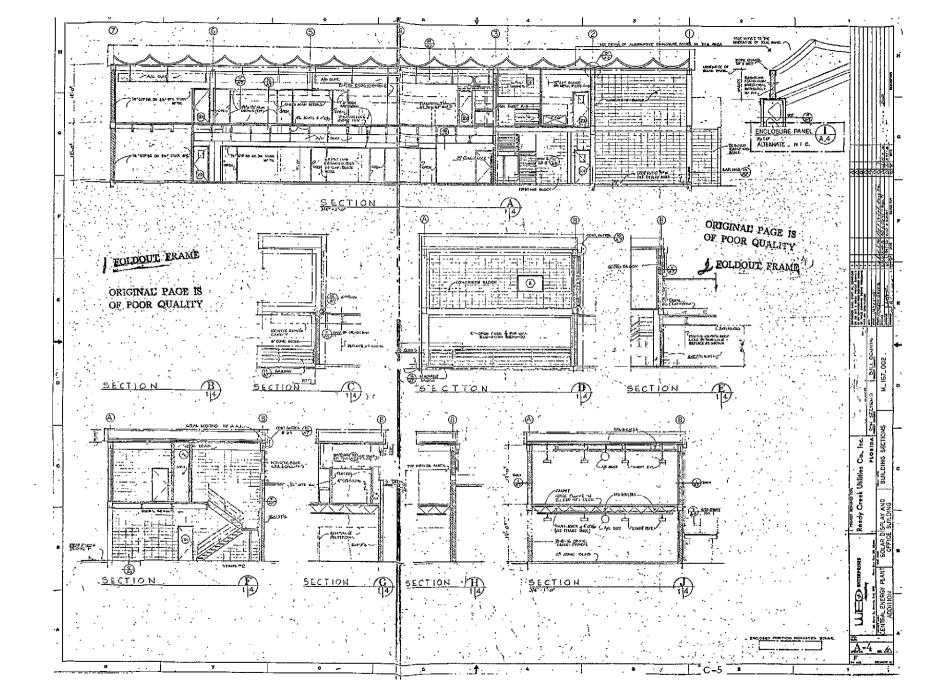
APPENDIX C

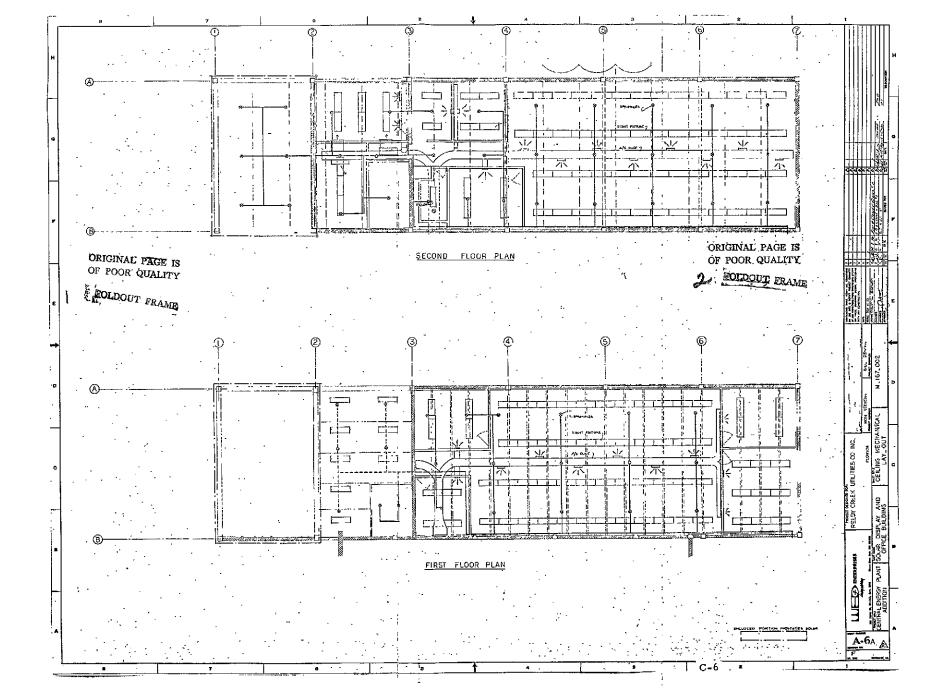
BUILDING DRAWINGS

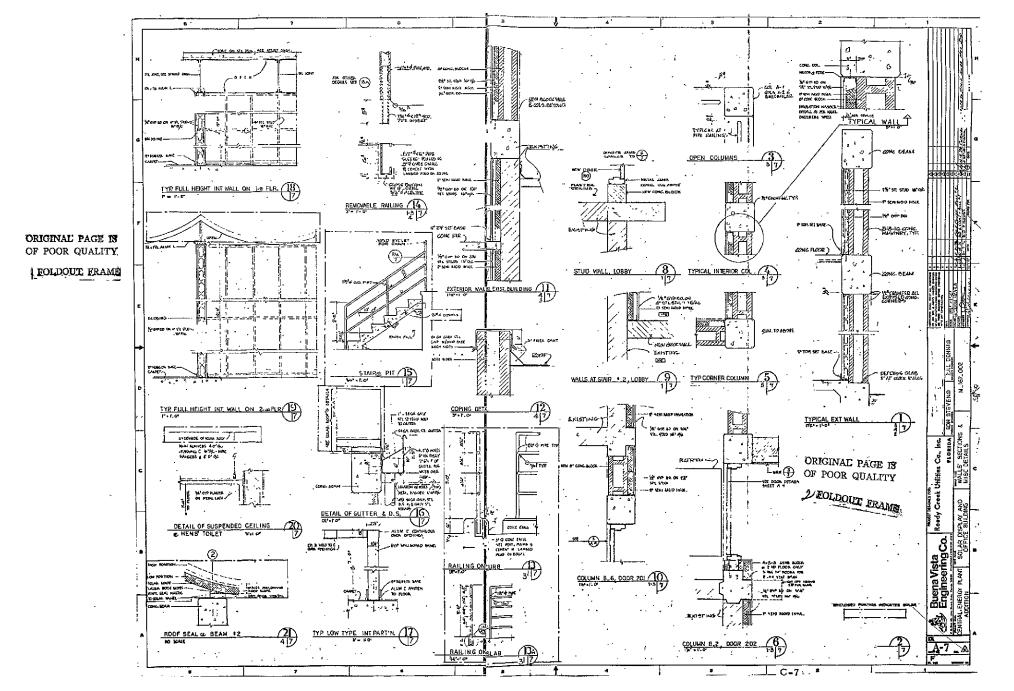
.

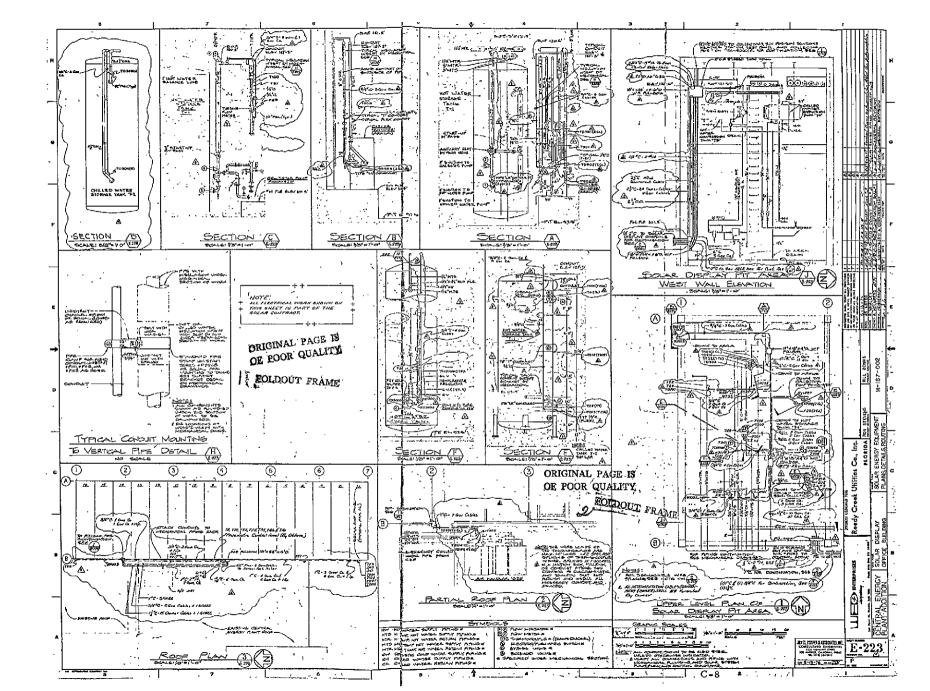

SOLAR DISPLAY AND OFFICE BUILDING

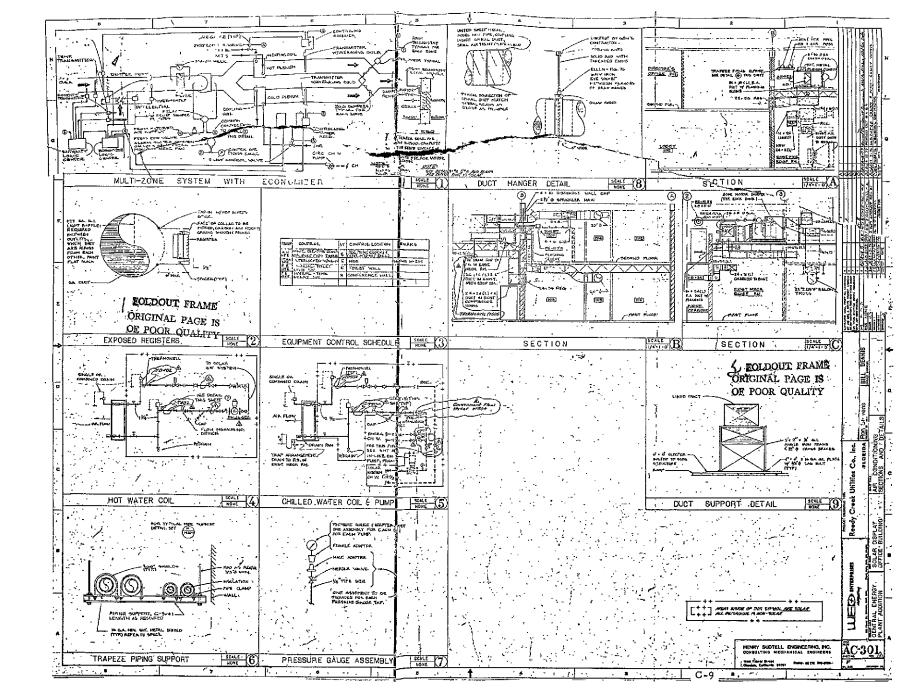

-

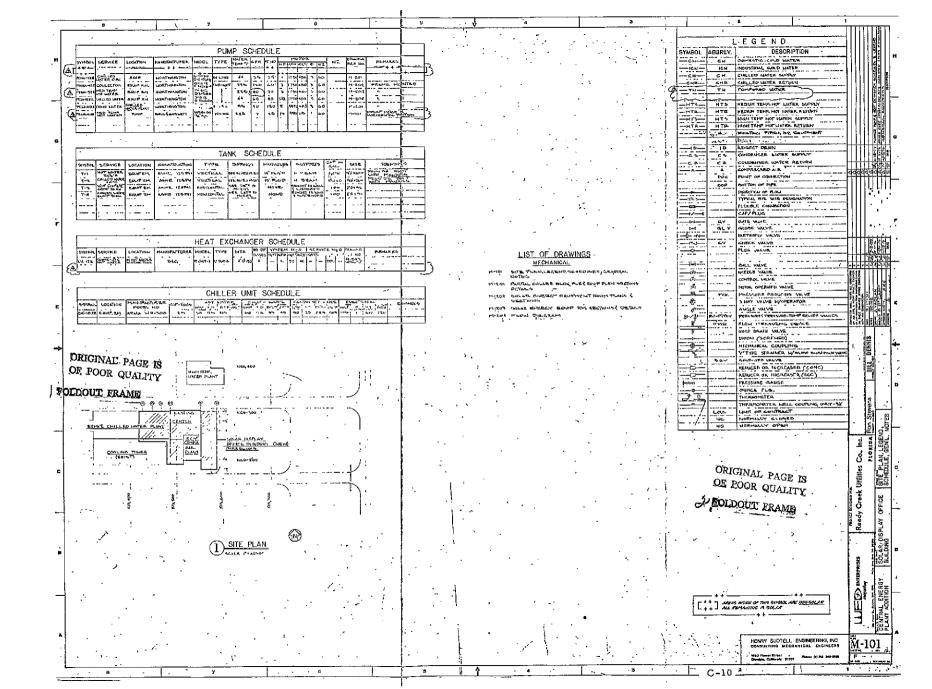

LIST OF DRAWINGS

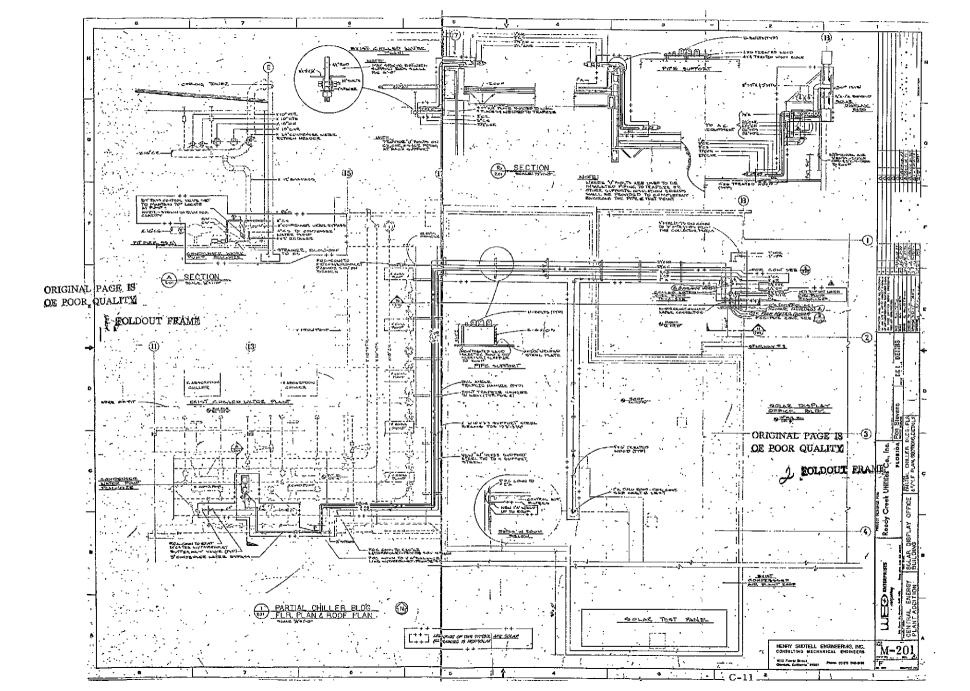

SOLAR DISPLAY AND OFFICE BUILDING

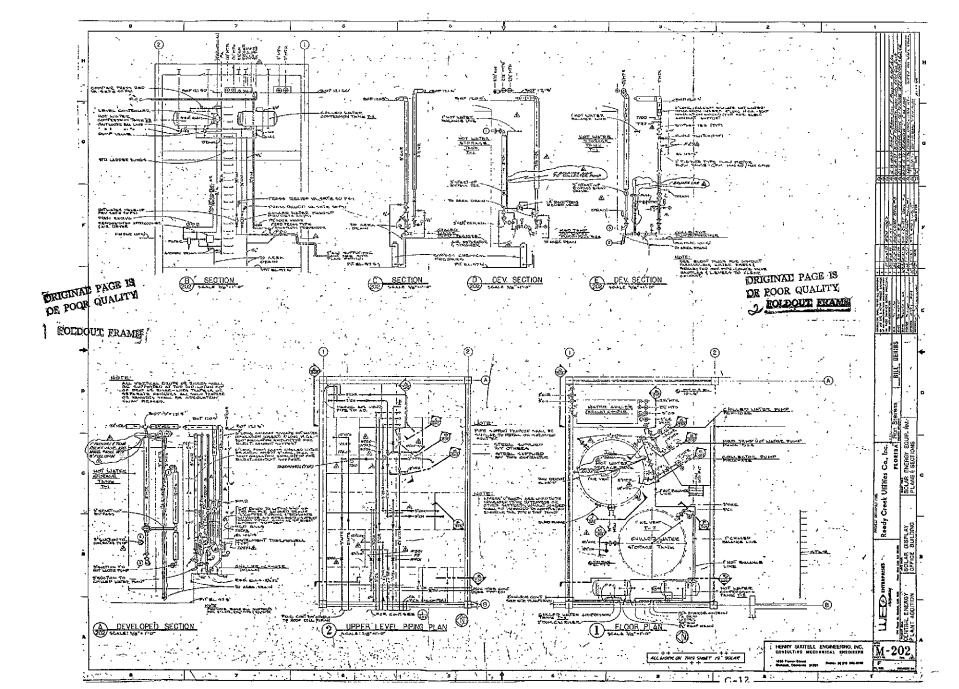

- A-1 First and Second Floor Plans
- A-3 Exterior Elevations
- A-4 Building Sections
- A-6A Ceiling Mechanical Lay-out
- A-7 Wall's Sections and Miscellaneous Details
- E-223 Solar Energy Equipment Plans, Details, Routing.
- AC-301 Air Conditioning Sections and Details
- M-101 Site Plan, Legend, Schedule, General Notes
- M-201 Partial Chiller Building Floor & Roof Plan, Sections, Details
- M-202 Solar Energy Equipment Room Plans and Sections
- M-203 Solar Energy Equipment Room Sections and Details
- M-204 Schematic Flow Diagram

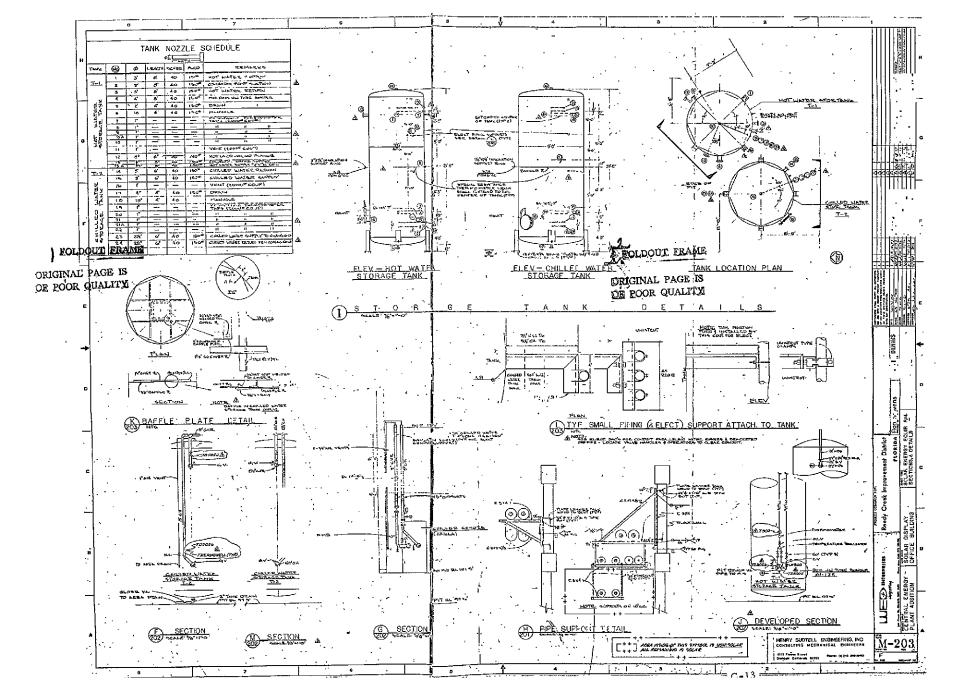


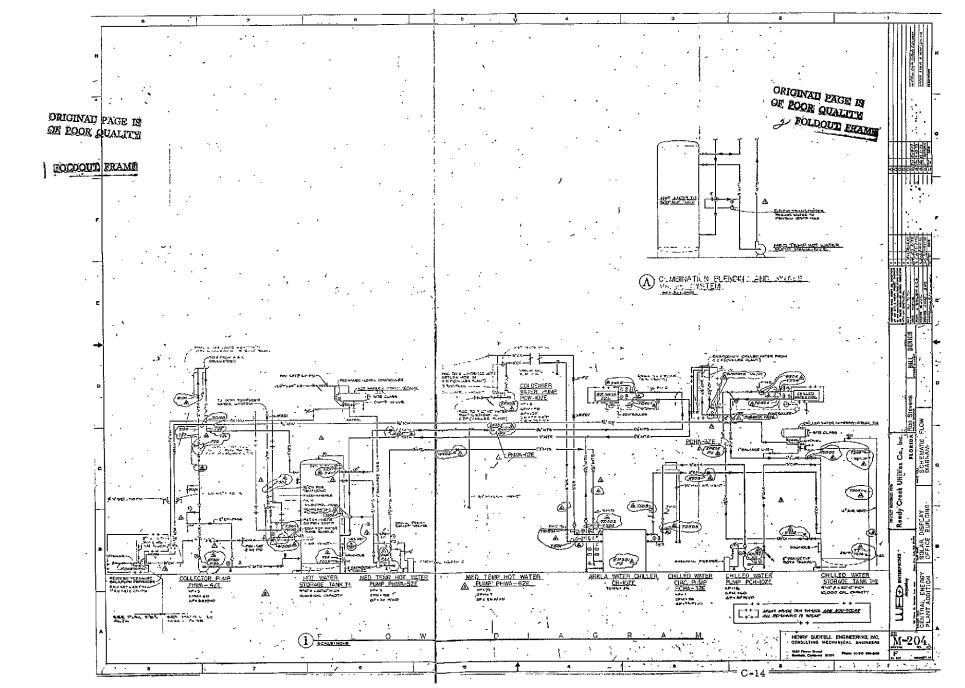












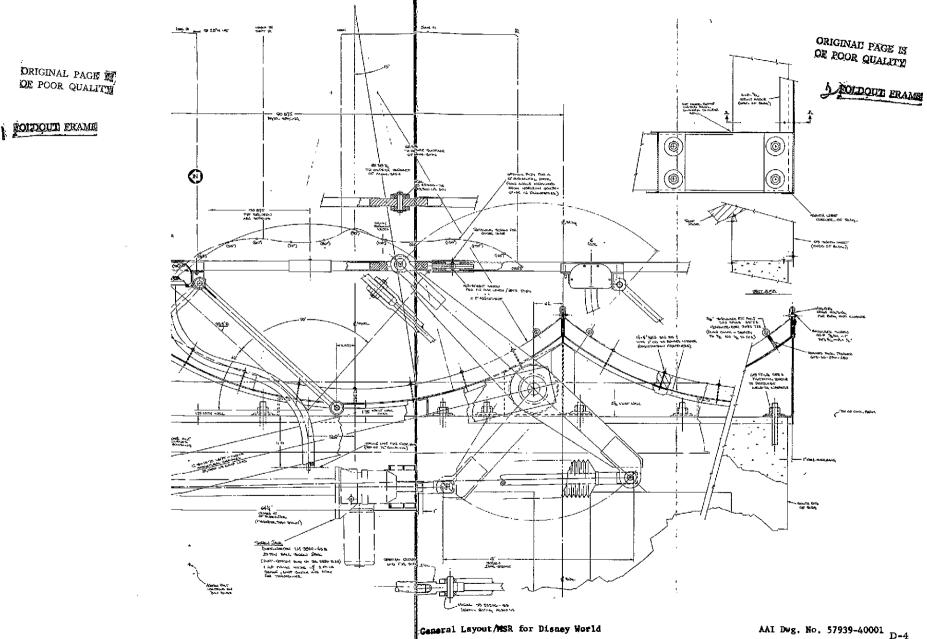
APPENDIX D

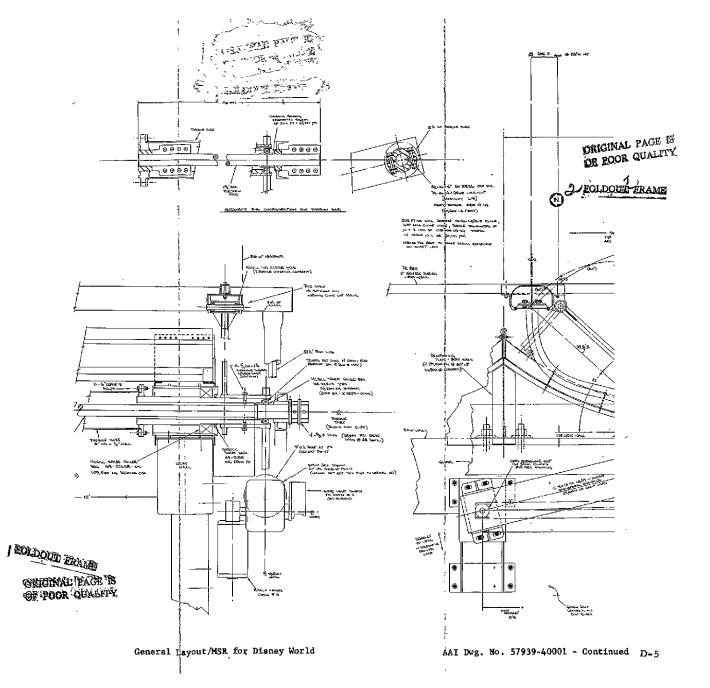
SOLAR COMPONENT DRAWINGS

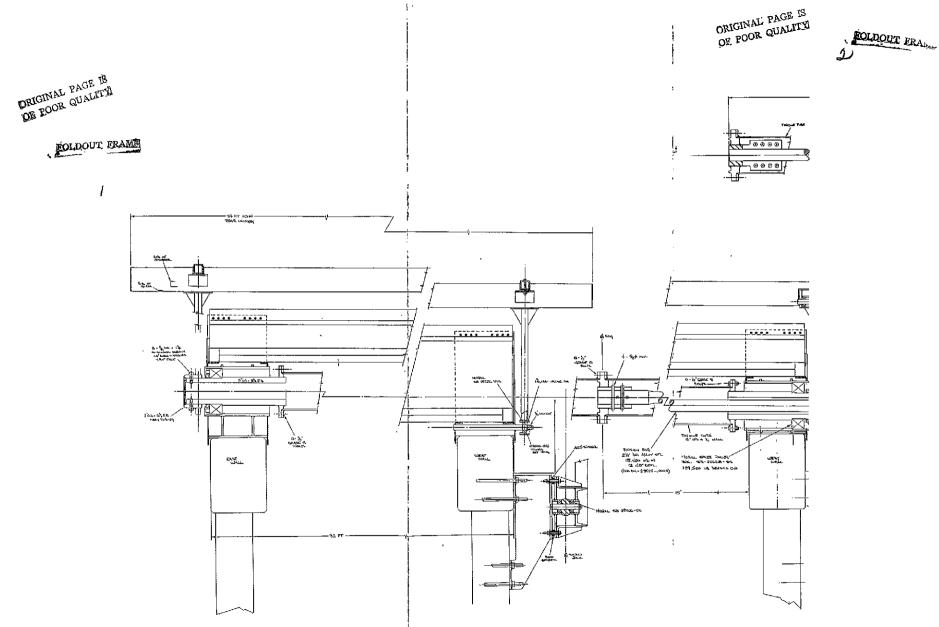
LIST OF DRAWINGS

SOLAR COMPONENT DRAWINGS

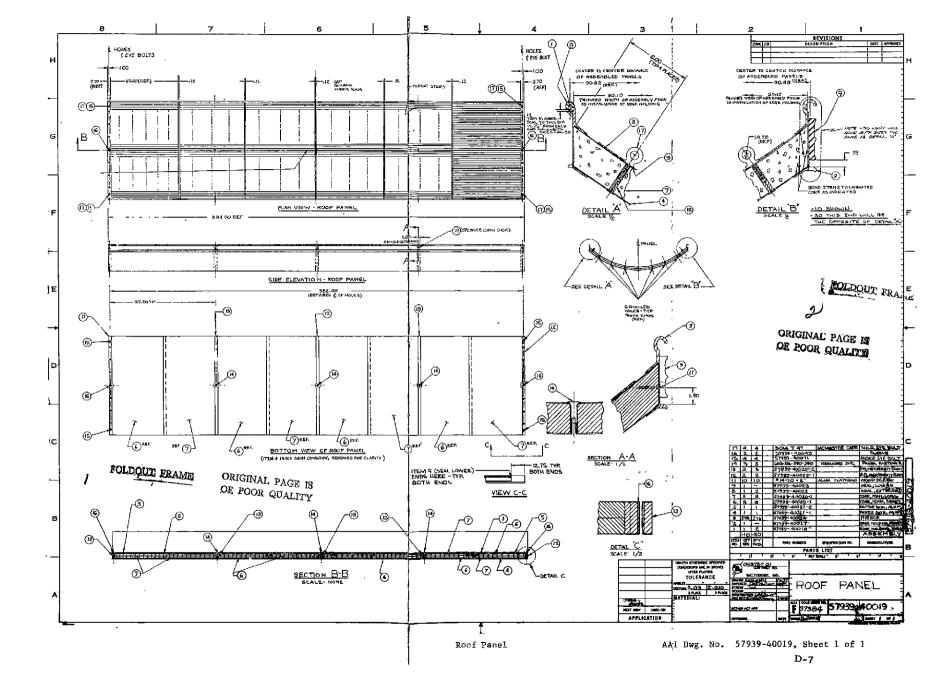
AAI-57939-40001 General Layout MSR for Disney World -AAI-57939-40001 General Layout MSR for Disney World -(Cont.) - General Layout MSR for Disney World AAI-57939-40001 (Cont.) AAI-57939-40019 - Roof Panel Sheet 1 of 1 AAI-57939-40064 - Solar Receiver Supply and Return Pipe Sheet 1 of 2 Installation - Solar Receiver Supply and Return Pipe AAI-57939-40064 Sheet 1 of 2 (Cont.) Installation AAI-57939-40064 - Solar Receiver Supply and Return Pipe Sheet 1 of 2 (Cont.) Installation - Solar Receiver Supply and Return Pipe AAI-57939-40064 Sheet 2 of 2 Installation AAI-57939-40092 - Electrical Installation Solar - Disney Sheet 1 of 1 • World AAI-57939-40092 - Electrical Installation Solar - Disney Sheet 1 of 1 (Cont.) World AAI-57939-40099 - Piping & Control Diagram (Same as our Sheet 1 of 1 M - 204AAI-57939-40128 - Drive Mechanism Installation Sheet 1 of 2 AAI-57939-40128 - Drive Mechanism Installation Sheet 2 of 2 AAI-57939-40142 - Roof Panel Installation Assembly Sheet 1 of 3 - Roof Panel Installation Assembly AAI-57939-40142 Sheet 2 of 3 AAI-57939-40142 - Roof Panel Installation Assembly Sheet 3 of 3

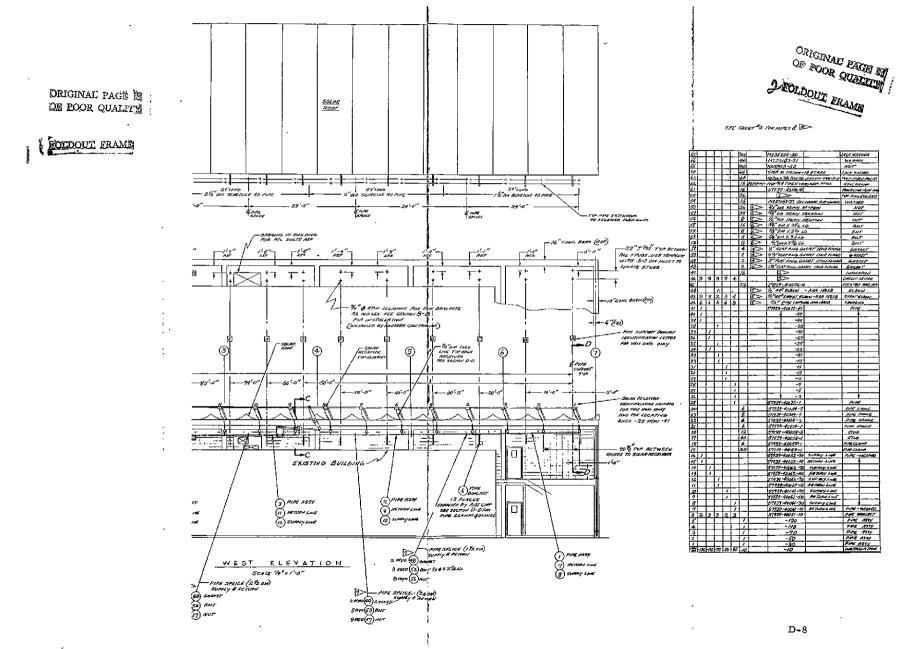

Solar Component Drawings (Continued)

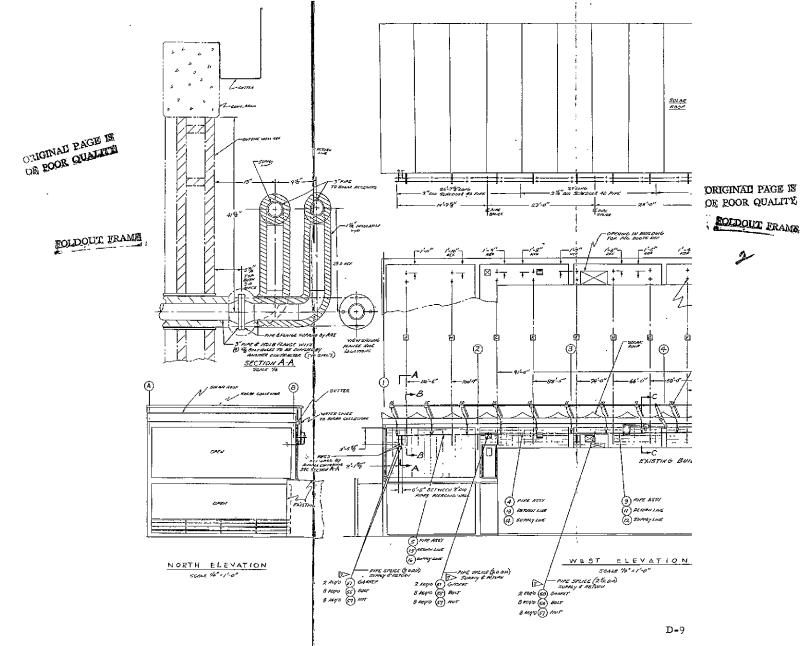

.

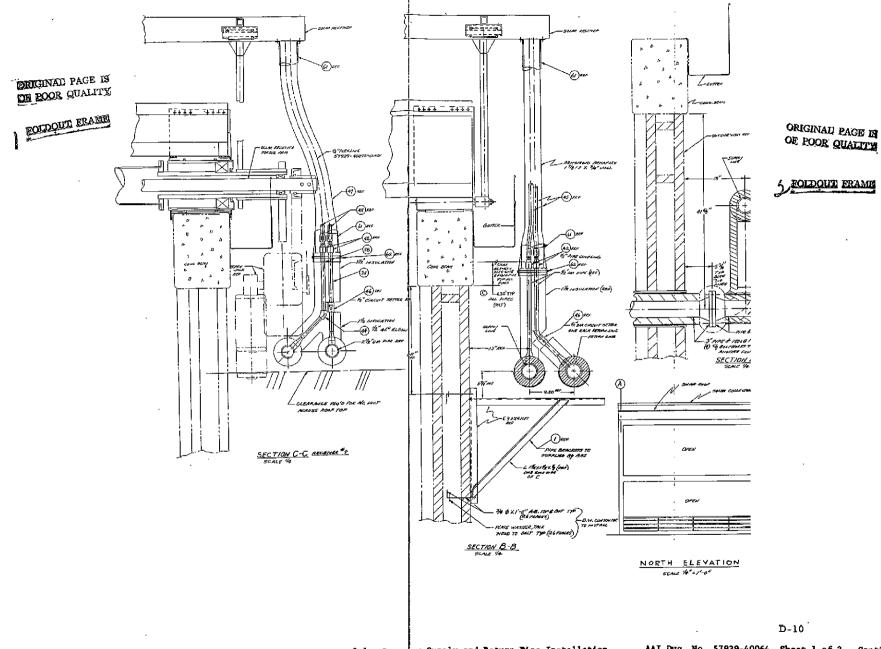

AAI-57939-40143 Sheet l of l		Receiver Installation
AAI-57939-40144 Sheet 1 of 1	-	Receiver Assembly
AAI-57607-40107 Sheet 1 of 1	-	Electrical Schematic Amplifier - Sun Follower
AAI-57607-lAlA2 Sheet l of l	-	Overheat - Defocus and Pump Control Logic (Schematic)
AAI-57607-lAlA3 Sheet 1 of 1	-	Sun Tracker Control Logic (Schematic)

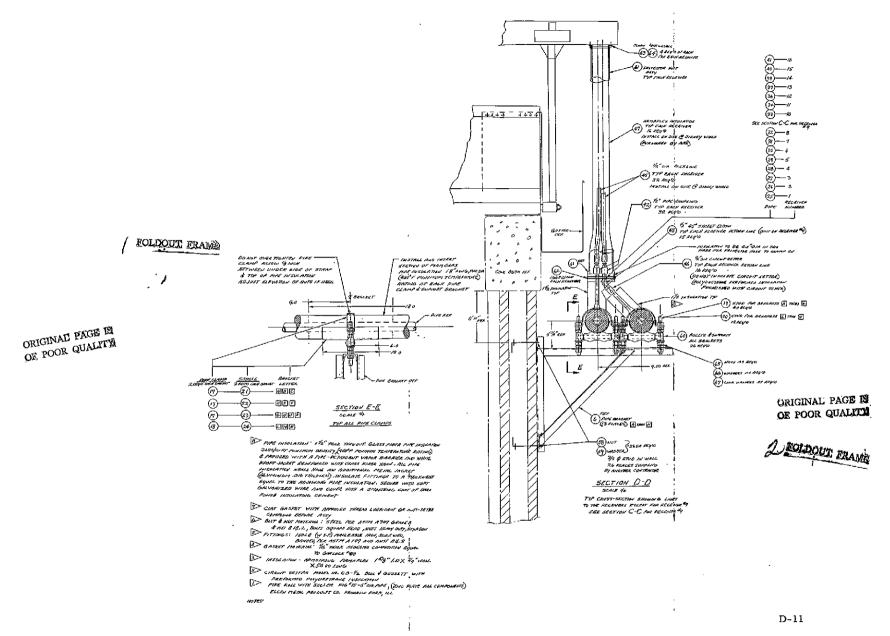
-

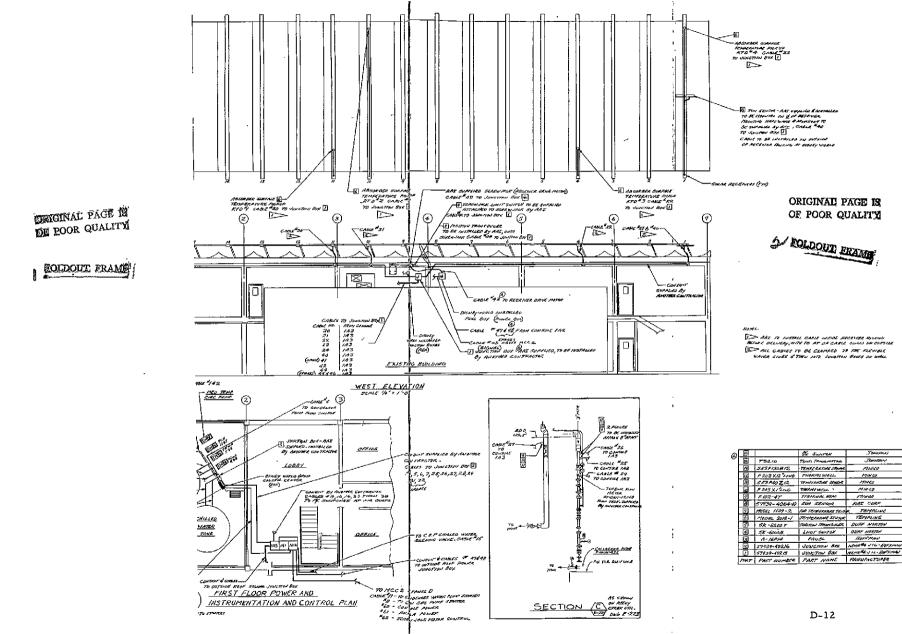

.

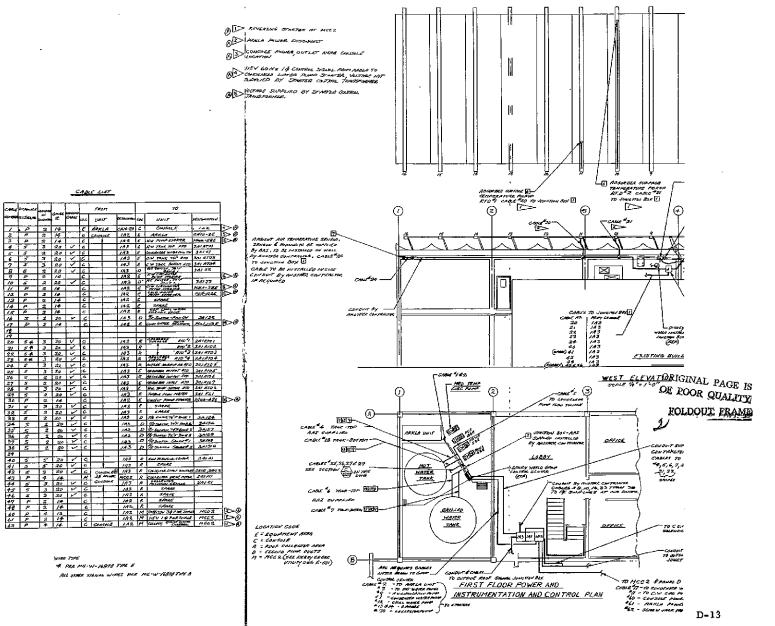





ŧ٠




AAI Dwg. No. 57939-40064, Sheet 1 of 2

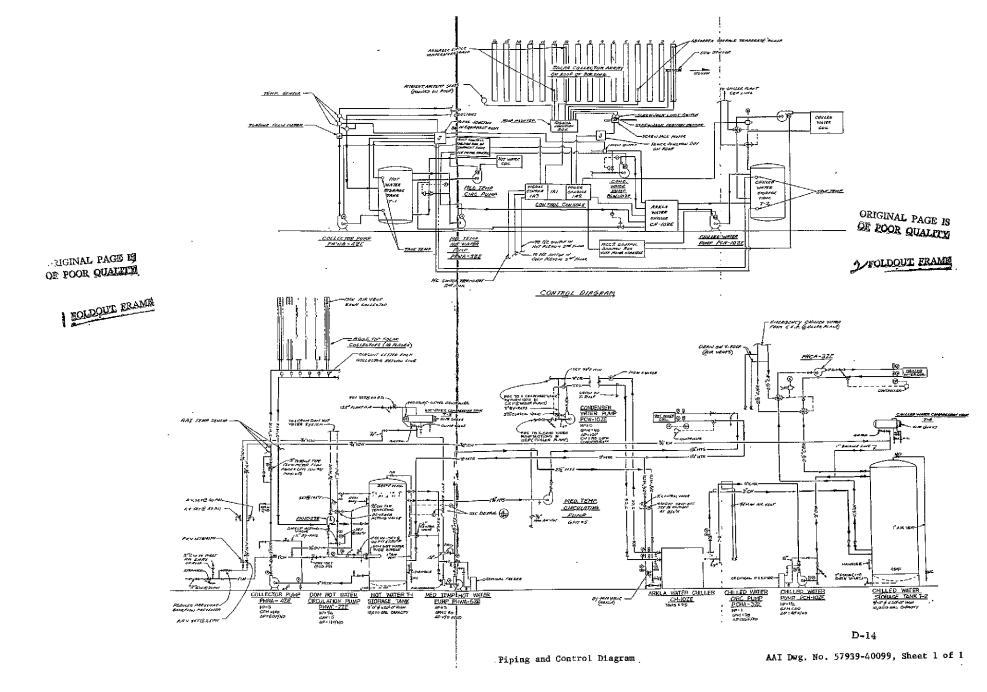

AAI Dwg. No. 57939-40064, Sheet 1 of 2 - Continued

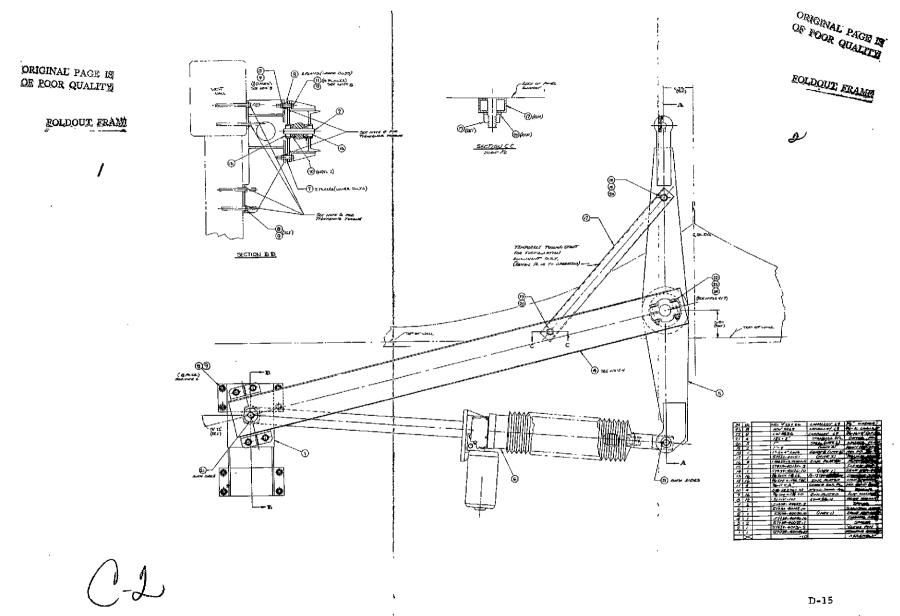
Electrical Installation Solar - DISNEY WORLD

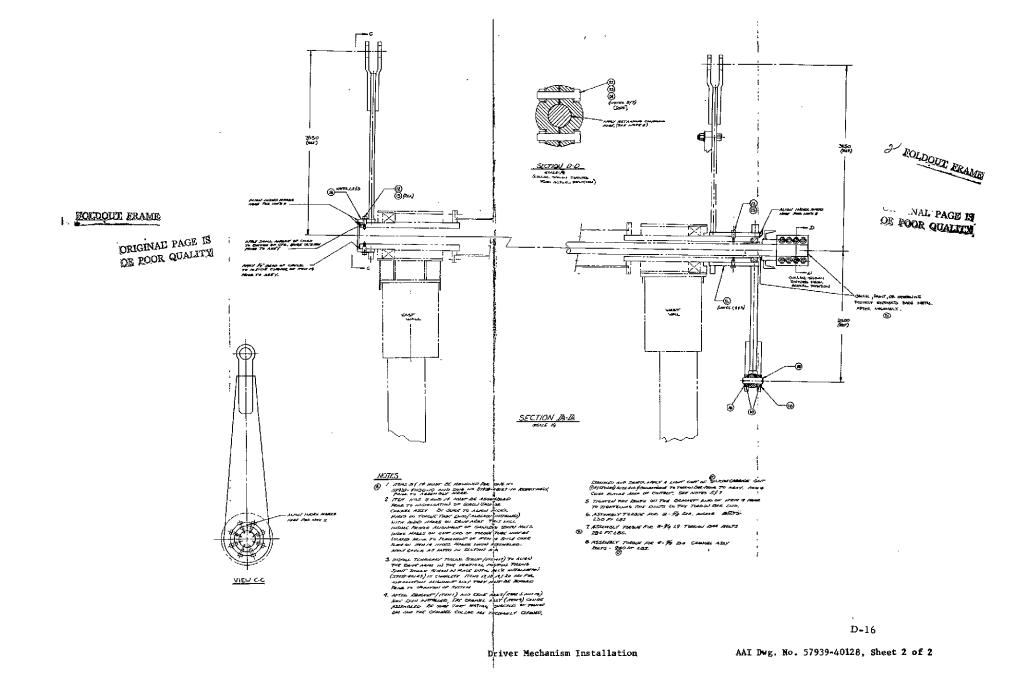
AAI Dwg. No. 57939-40092, Sheet 1 of 1

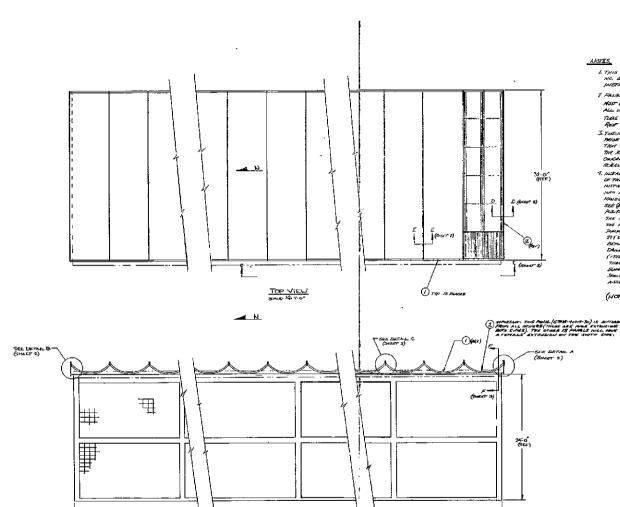
ORIGINAL PAGE IS OF POOR QUALITY 4

12


27


40


EOLDOUT FRAME


Electrical installation Solar - DISMEY WORLD

AAI Dwg. No. 57939-40092, Sheet 1 of 1 - Continued

121-0" (REF.)

WEST ELEVATION SCALE- KIT I'O"

EOLDOUT ERAME

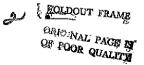
3

ORIGINAL PAGE IS

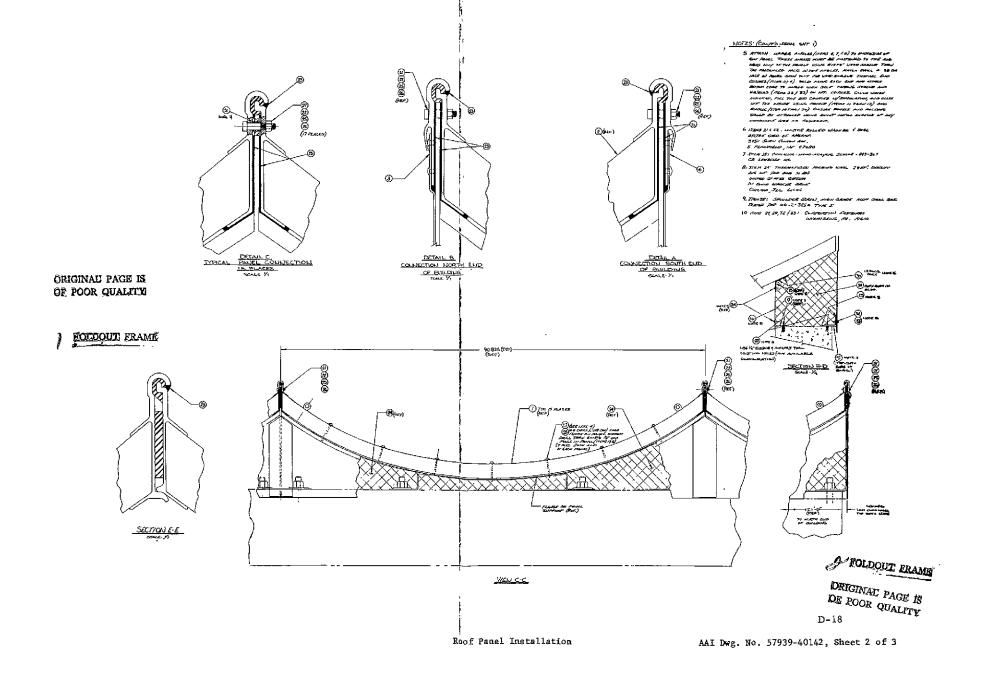
DE POOR QUALTY

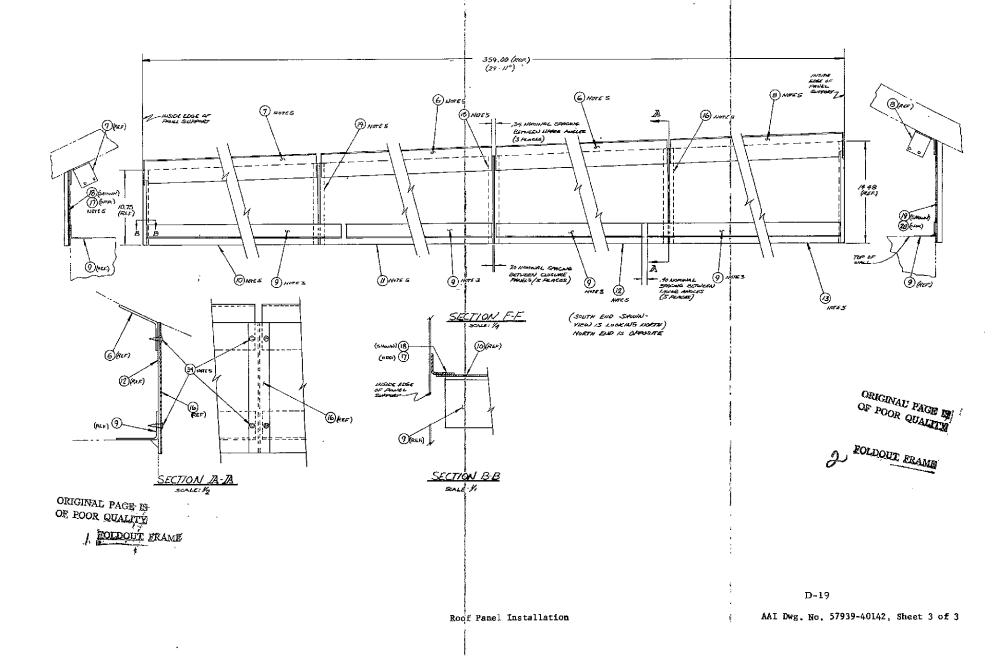
NOTES

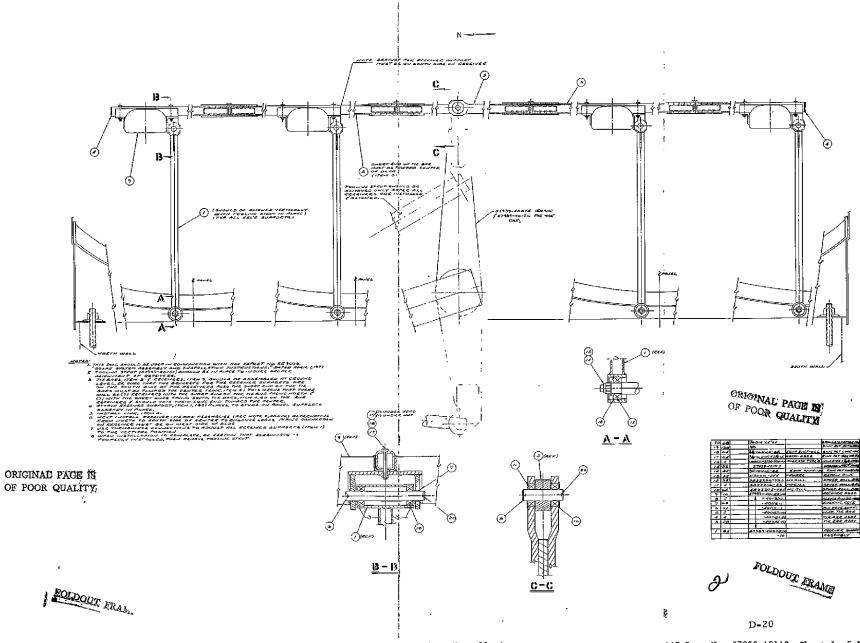

I. THIS SEAMING SHOULD BE USED AN CONTAKTION W/ AAT REPORT NO. DE POOR " SULAR SYSTEM ASSEMBLY AND INSTALLATION INSTRUCTIONS ... "DATED APRIL 1, 1977.


2 PANEL SUPPORT INSTALLATION ARE DUG. NO. STRID- 40060 NOT BE COMPLETE PRICE TO ASSEMBLY OF THE ROLF ANNIELS. ALL WELDING & PAINTING MUST BE FINISHED, THE TARAUE TUBE MUST BE MISTALLED PRIOR TO ASSY. OF THE OTH ROOF PRINCE.

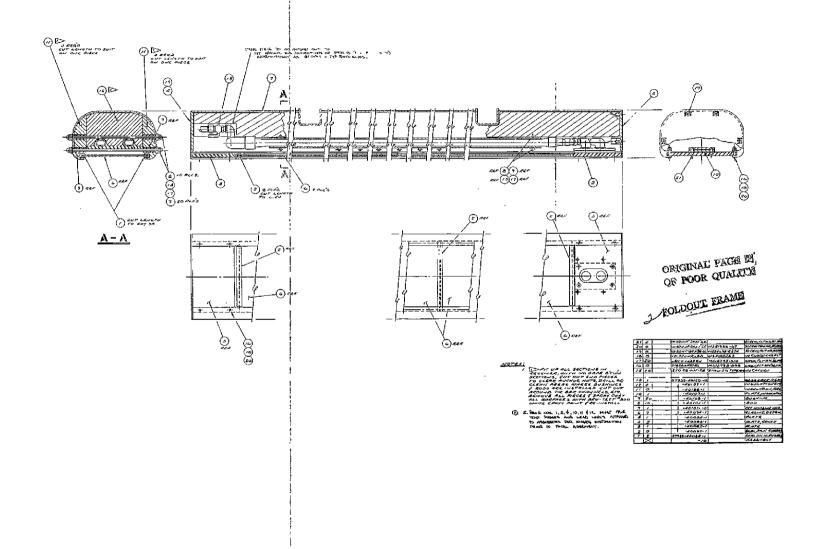
3 TOSOLATION (STEP 25) OF THE PANEL SUPPORTS MAST BE DONG HOR TO ASSUMBLY OF THE MOST PAULUS. IT IS ALLO ACCOMMINGS THAT THE END CLASSIE ANALES (TEAS 5 F 9) BS INSTALLED BETHER THE PLOT PROJECT ITTERS 5 5 9 SHOULD BE ATTRACTED TO THE CONCLETE BEAM USING PREDENLED HOLES ANY AMAILABLE VA SCREAKAND ANCHORS CAN BE LISED FOR THIS FURPOSE.


1. MERALLATION OF THE POOF FRIELS MUST REGULAT THE SAUTH END OF THE SLOG PART NO. STAN-40019-30 (TEM2) MUST BE INSTALLED 15. Successions Anniels (ITEN 1) ARE THEN LAWRERS INTO PLACE WORKENSG FROM SOUTH TO ADDETH ALL FRANKLY MORT OF HANDLED WITH A STRINGBACK WITH CABLES OF VIEYALG LENSTH SEE (ER. WOOS FIGURES 12, 13 \$14). AFTER EACH PRIJEL IS PROPERLY ASITENED AND ALIGNED 7 HOLES SAMULD BE DALLED IN THE REVEL SUPPRIATE AT ENCH AND THEN THE TO THE MEAN ТНЕ РИЛСЕ А НА ДАЛИ (1319 ДА) ЗАУША ВЕШЕГО ПА ТНИЗ РИКНОЗЕ, SELE ГАЛАНИЕ SCARKE WITH 2" SEMINIE MACHINES (THUS 27 (28) SANCE BE ALSTALLED IN THESE MALES TO MELLET CARAS BETWEEN ROOF ADDEL AND RUBBER SCAL. EACH ADDEL ENDED THE A DELLER 32 PLCS (PHOLES ON SMEN COUNCY) FOR SMERLER STATE (TERS 21, 22, 25, 526) THESE HERS MUST DE MATCHED BOLLED THEN CHATTANG MOLES IN THE MEETING No PORTS OF THE FRAME SUMMATE USING SONCARS (MEM 34) AS DRILL BUSANNES. THESE SUCCES WILL REMAIN IN PLACE AS THE NEXT ANNAL IS A.5.7.8.04.8.0

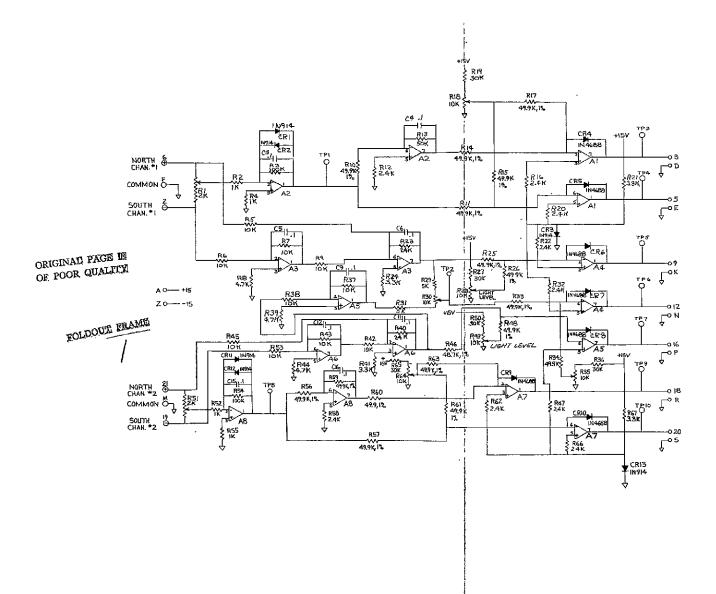

(NOTES CONTINUED ON SMEET 2)



E

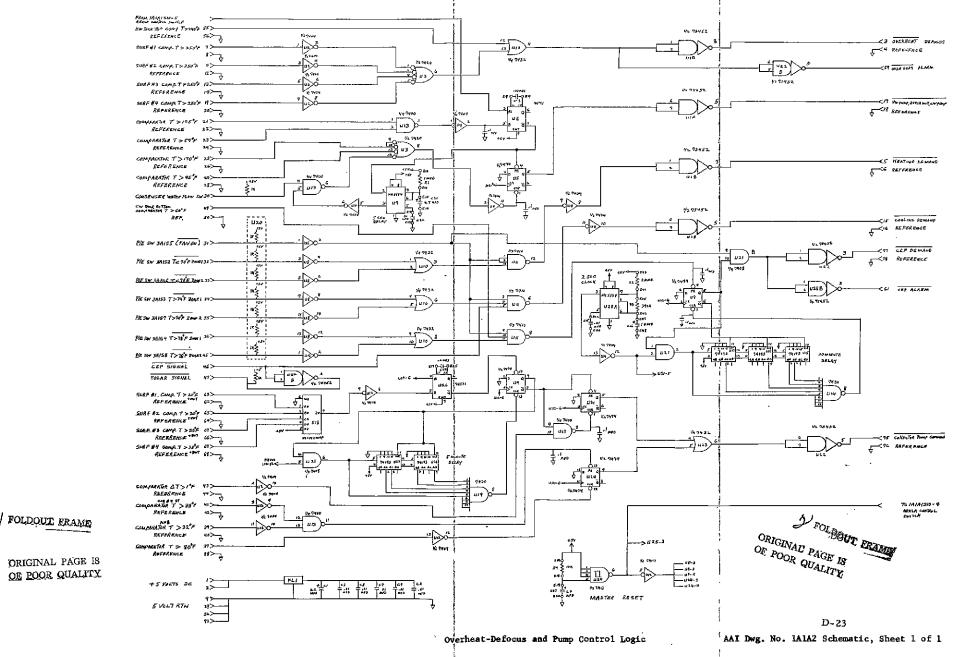


Receiver Installation

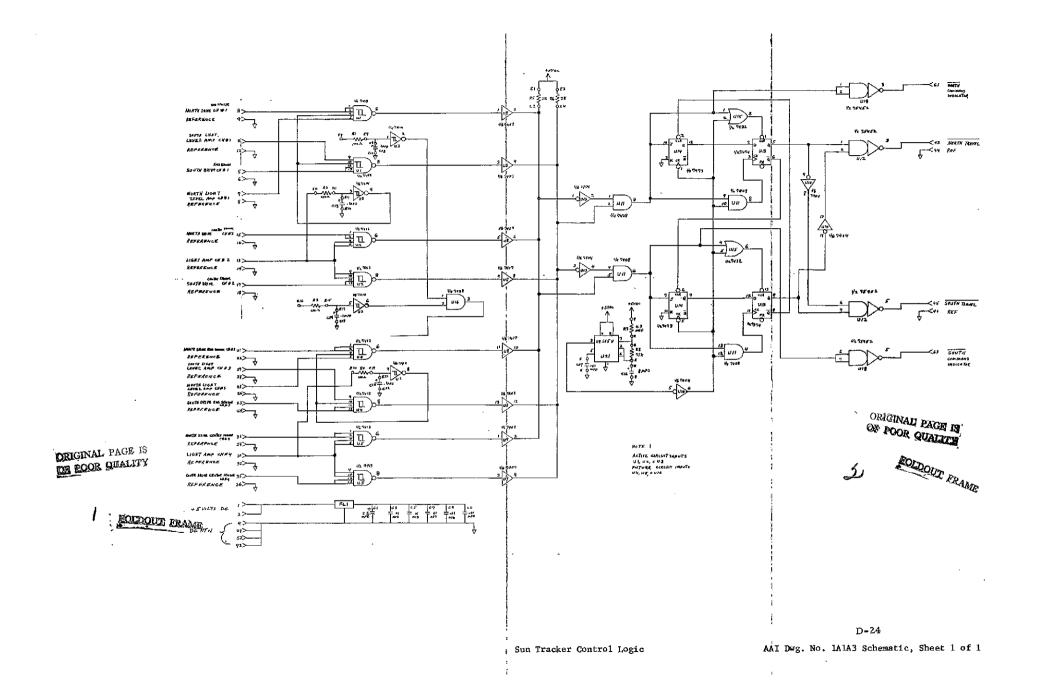

AAI Dwg. No. 57939-40143, Sheet 1 of 1

D-21 AAI Dwg. No. 57939-40144, Sheet 1 of 1

Receiver Assembly


ORIGINAL PAGE IS OF POOR QUALLY

I.ALL RESISTOR VALUES ARE IN OHMS. ALL RESISTANCE TOLERANCES ARE ±5% EXCEPT WHERE NOTED. ALL CAPACITOR VALUES ARE IN AF.


FOLDOUT FRAME

D-22

ORIGINAL PAGE IS

OF POOR QUALITY

APPENDIX E

INSTRUMENTATION PROGRAM AND COMPONENTS LIST

R- 40 +52.3	260-2			· •	ENCLAS	UNE J	Jo.
13				REVISIONS		· . ·	
Ž	СНК	ENGRG NOTICE	LTR	DESCRIPTION		DATE	APPROVED
i K		66333RH	-	RELEASE		5/26/7	RED
•	P.	66348 GR	A	COMPLETE REVISION TO MOD II S REQUIREMENTS & RE-NUMBER PAGE TO 30.		11/21/	VS/IUZ
	R	66348NT		REV PAGE 5-CORRECT PHONE NO. F 7-COL. 7.REV PAGE 8-COL 9. REV 13-COL 7, DEFINITION. REV PAGE COL 9. DEFINITION. REV PAGE 16- NOTE 5. REV PAGE 24-CHANGE TEM DIFF TEMP QUANTITTES. REV PAGE TO 30-CHANGE TDS TO TS, REDEFI CHANS, ADD "T" CORR & SCALE FA AND ADD COER VALUES TO 1001 &	7 PAGE 24- ADD 1P & 1S 23 INE "A" CTORS,		3
	R	66348ZV		Rev page 8 col 9. Rev page 16 notes 6 & 7. Rev pages 25 thr Change T coefficients for Meas T300,T555,& T553. Rev channel delete T300 add spare. Rev ch 34 change scale factor. Rev c 48 delete spare add T300. Delete pages 30 & 31.	u 29. S. No. 7 Nannel	3/23/	8 HE/V.

FA33

CONTR NO. NAS9-32036	N IN	TERNA	FEDERAL	SYSTEMS		ES CORP.
DISGN CHK	-1		NTATION CREEK UI			WORLD
DSGN APPROVAL 1-, . L-A -1	SIZE	CODE 2023	ident no. 4	-	7933707	<u> </u>
18	SCALE		· wT		SHEET	1 of 29

Dietzgen N. O. 127 "Draftex"

INSTRUMENTATION PROGRAM ANE	COMPONENTS LIST REEDY CREEK UTILITIES IP 7933707	<u>. 5/26/7</u> 7 REV
	INTRODUCTION	

THIS DOCUMENT DEFINES AND CONTROLS THE MEASURING REQUIREMENTS AND INSTRUMENTATION SYSTEM APPLICATIONS FOR A SOLAR HEATING AND COOLING OPERATIONAL SITE.

THE SECTIONS OF THIS DOCUMENT ARE DESCRIBED AS FOLLOWS:

. 변

- 1. PREAMBLE SECTION CONTAINS DESCRIPTIONS, EXPLANATIONS, INSTRUCTIONS AND DIAGRAMS NECESSARY TO UNDERSTAND THIS DOCUMENT AND THE APPLICATION OF THE DATA COLLECTION SYSTEM TO A SPECIFIC SITE.
- 2. INSTRUMENTATION COMPONENTS SECTION LISTS ALL HARDWARE ELEMENTS OF THE DATA COLLECTION EQUIPMENT NOT SUBSEQUENTLY LISTED IN THE MEASUREMENTS SECTION.
- 3. MEASUREMENTS SECTION LISTS ALL MEASUREMENTS WHICH ORIGINATE IN A SOLAR HEATING AND COOLING OPERATIONAL SITE WITH APPROPRIATE INFORMATION FOR EACH MEASUREMENT.

OF ROOM QUARTER

	LOMA!
INSTRUMENTATION PROGRAM AND COMPONENTS LIST REEDY CREEK UTILITIES IP7933707	03/23/78 REV_C
TABLE OF CONTENTS	
·	PAGE
APPROVAL/REVISION SHEET	1
INTRODUCTION	. 2
TABLE ON CONTENTS	3
PREAMBLE SECTION	4
INSTRUMENTATION COMPONENTS SECTION	19
MEASUREMENTS SECTION	21
	3
ג	1

•

,

E-4

INSTRUMENTATION PROGR	AM AND COMPONENTS	5 LIST	REEDY CREEK UTILITIES	· · · · · · · · · · · · · · · · · · ·	5/26/77
	ł		IP 7933707		REV

PREAMBLE SECTION •

•

.

۲ 5-

.

4

INSTRUMENTATION PROGRAM AND COMPONENTS LIST: ____ REEDY CREEK UTILITIES 1/26/78 IP 7933707 REV **OPERATIONAL SITE IDENTIFICATION** REEDY CREEK UTILITIES--DISNEY WORLD SITE NAME: _ 1. 2126 2. PON: ___ SITE NUMBER:___0018 3. ; SITE SDAS TELEPHONE NUMBER: 305-824-3534 4. SITE ADAS COMPUTER ADDRESS: 062 5. ÷ SITE ADDRESS: CENTRAL ENERGY PLANT OFFICE BLDG. 6. LOCATION: LAKE BUENA VISTA, FLA. 7. ١. , · SYSTEM DESIGNER: _____AAI CORP. BALTIMORE, MD. 8. ۰. SOLAR HEATING AND COOLING 9. SYSTEM TYPE: _ FLUID MEDIA: WATER . " 10. 5

, YOMR!,

ASSOCIATED DOCUMENTS

- 1. SOLAR HEATING AND COOLING INSTRUMENTATION INSTALLATION GUIDELINES, OCTOBER 1, 1977.
- 2. [] SITE DATA ACQUISITION SUBSYSTEM PERFORMANCE SPECIFICATION, MAY 14, 1976, IBM NO. 7932905.

[X] SITE DATA ACQUISITION SUBSYSTEM MODEL II, PERFORMANCE SPECIFICATION, 7934354. [] SITE DATA ACQUISITION PERFORMANCE SPECIFICATION. ACUREX MODEL.

3. CENTRAL DATA PROCESSING SOFTWARE PERFORMANCE SPECIFICATION, JULY 28, 1976, IBM NO. 7933251.

4. THERMAL DATA REQUIREMENTS AND PERFORMANCE EVALUATION PROCEDURES FOR THE NATIONAL SOLAR HEATING AND COOLING DEMONSTRATION PROGRAM, AUGUST, 1976 (NBSIR 76-1137).

5. JUNCTION BOX PERFORMANCE SPECIFICATION, OCTOBER 26, 1976, IBM NO. 7933446.

6. ON SITE MONITOR (OSM) OPERATION MANUAL, OCTOBER 17, 1977, IBM NO. 7934365.

ORIGINAL PAGE IS OF POOR QUALITY.

년-7

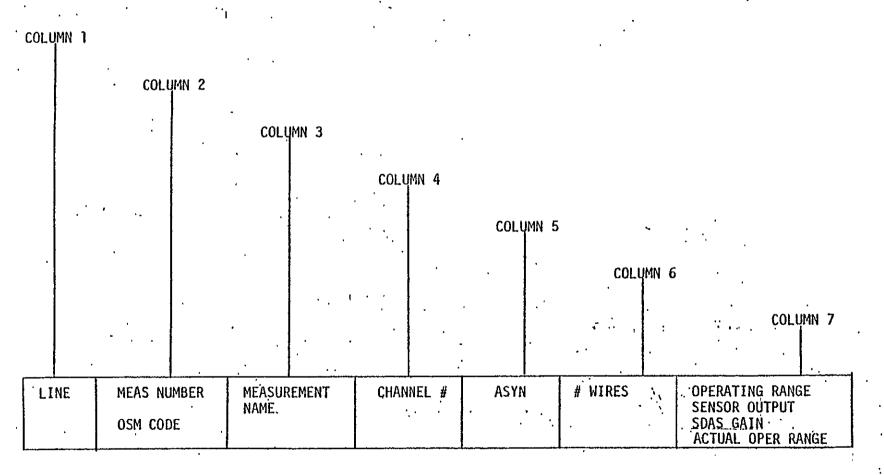
LOWR

11/7/77

REV

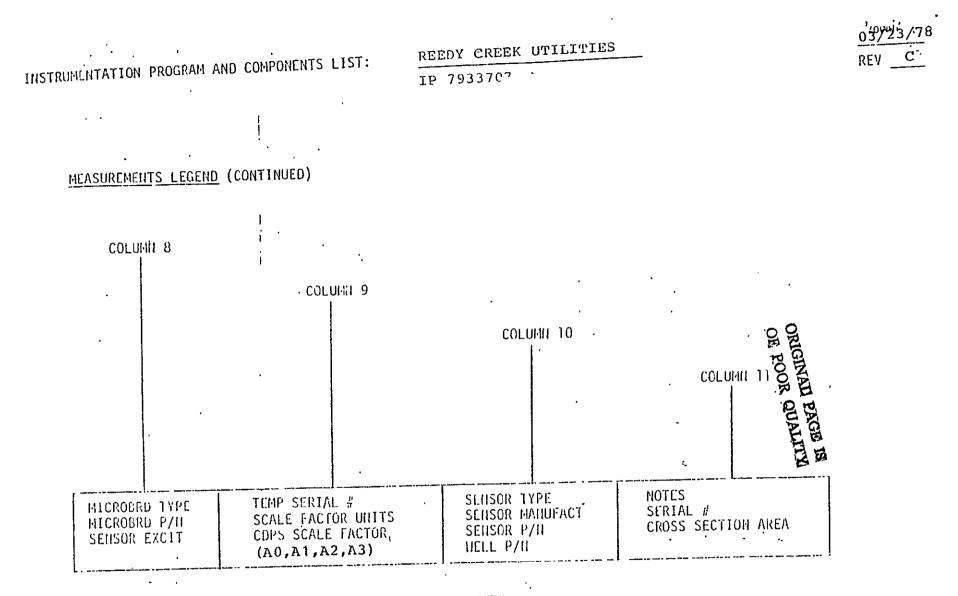
INSTRUMENTATION PROGRAM AND COMPONENTS LIST: REEDY CREEK UTILITIES

IP 7933707


REV B

MEASUREMENTS LEGEND

.


, *.* •

THE LEGEND FOR THE DATA LISTED IN THE MEASUREMENTS SECTION OF THIS DOCUMENT IS AS FOLLOWS: .

ਦ 8

7÷,

THE COLUMN HEADINGS ARE DEFINED ON THE FOLLOWING SHI'ETS.

INSTRUMENTATION PROGRAM AND COMPONENTS LIST REEDY CREEK UTILITIES <u>11/7/77</u> IP 7933707 <u>REV A</u> <u>COLUMN 1. LINE NUMBER</u> THIS COLUMN IS USED FOR AUTOMATIC PRINTOUT DATA. CONTROL AND LINE IDENTIFICATION. <u>COLUMN 2.</u> (MULTIPLE DATA SETS)

THIS COLUMN CONTAINS TWO DATA SETS AS DEFINED BELOW:

MEAS NUMBER. THE FIRST LINE OF THIS COLUMN LISTS EACH MEASUREMENT WHICH IS IDENTIFIED BY A UNIQUE ALPHANUMERIC CODE CONSISTING OF TEN CHARACTERS AS FOLLOWS:

•	FIELD NO.	1	2 [·]	3	4		
	MEASUREMENT NO.	_XY	001		0001		
	PARAMETER TYPE PARAMETER SEQUENCE SEPARATOR SITE IDENTIFIER						

AN ASTERISK (*) FOLLOWING THE MEASUREMENT NUMBER DENOTES A CHANGE FROM THE PREVIOUS RELEASE.

OSM CODE. THE SECOND LINE OF THIS COLUMN LISTS THE ON SITE MONITOR SWITCH SETTING TO DISPLAY ENGINEERING UNIT DATA. THIS IS TO BE USED WITH ASSOCIATED DOCUMENT 6 AND THE GENERAL NOTES ON PAGE 16 OF THIS DOCUMENT.

- E - 1

.

> ·

F

ייי "**ק** INSTRUMENTATION PROGRAM AND COMPONENTS LIST --- REEDY CREEK UTILITIES 11/7/77 IP 7933707 REV A ۰,

.

.

.

.

A. FIELD NO. 1 - PARAMETER TYPE

. · ·

CODE	PARAMETER I	UNITS	ABB ·
D D	WIND DIRECTION SWITCH	DEGREES - AZIMUTH DEGREES - ON/OFF	DEG DEG
EP	ELECTRICAL POWER	KILOWATTS	ĸw
F F	FLOWRATE (NATURAL GAS) FLOWRATE (FUEL OIL)	FEET ³ /MINUTE GAL/MINUTE	SCFM GPM
I	SOLAR FLUX	BTU PER FOOT ² X HOUR	BTU/FT ² - HR
RH	HUMIDITY	PERCENT	PER
SP.	SPARE	N/A	N/A
Т	TEMPERATURE	DEGREES FAHRENHEIT	DEG F
TD	DIFFERENTIAL TEMPERATURE	DEGREES FAHRENHEIT	DEG F/DT
W W	FLOWRATE (LIQUID) FLOWRATE (AIR)	GALLONS PER MINUTE, CUBIC FEET PER MINUTE	GPM CFM
۷	WIND SPEED	MILES PER HOUR	мрн
PD	DIFFERENTIAL PRESSURE	POUNDS PER SQ. INCH	PSI

LILY BIS

	F	• •				,
INSTRUMENTATION PROGRAM	AND COMPONENTS	LIST	REEDY CREEK	UTLITTES		5/26/77
•	, com onento	C101	CELDI CRULIK	OTTRETERS		
			IP·7933707	•		
	•					' REV
'	i				• •	

B. FIELD NO. 2 - PARAMETER SEQUENCE -

. •

A NUMERIC GROUPING WHICH DESIGNATES THE SEQUENTIAL NUMBER OF A MEASUREMENT WITHIN EACH SUBSYSTEM. THE SEQUENTIAL NUMBER OF EACH MEASUREMENT CONFORMS TO THE PATTERN ESTABLISHED IN FIGURE 3-1 OF SHC-1006. SEQUENTIAL NUMBER ALLOCATIONS ARE AS FOLLOWS:

NUMERIC	SEQUENCE	•	SUBSYSTEM
001-099		-	CLIMATOLOGICAL
100-199			COLLECTOR
· 200–299	• •	•	THERMAL STORAGE
300-399			DOMESTIC HOT WATER
400-499			SPACE HEATING
500-599			SPACE COOLING
600-699			BUILDING/LOAD
•			

C. FIELD NO. 3 - SEPARATOR

FOR NUMERIC CLARITY.

D. FIELD NO. 4 - SITE IDENTIFIER

A NUMERIC GROUPING WHICH DESIGNATES THE SITE IN WHICH THE MEASUREMENT IS LOCATED.

17

ZOWE

20148

INSTRUMENTATION PROGRAM AND COMPONENTS LIST REEDY CREEK UTILITIES 11/7/77 IP 7933707

REV Α

MEASUREMENT NAME COLUMN 3.

THIS COLUMN LISTS THE MEASUREMENT NAME USED TO DESCRIBE THE DATA SOURCE.

CHANNEL NUMBER COLUMN 4.

THIS COLUMN DEFINES THE SDAS CHANNEL ASSIGNED TO EACH MEASUREMENT, CHANNEL 1 IS RESERVED FOR AN SDAS INTERNAL CALIBRATION OFFSET MEASUREMENT.

COLUMN 5. ASYN

ç

THIS COLUMN DEFINES EACH MEASUREMENT WHICH IS ASYNCHRONOUSLY SAMPLED AND IS INDICATED BY THE LETTER "A". THESE MEASUREMENTS ARE SAMPLED EACH 32 SECONDS WITH THE AVERAGED VALUE PER 5 MINUTES MAINTAINED FOR TRANSMISSION. SYNCHRONOUSLY SAMPLED MEASUREMENTS ARE READ ONCE PER 5 MINUTES AND ARE IDENTIFIED BY THE " - " SYMBOL.

COLUMN 6. HUMBER WIRES

EI 2 WIRE OR 2 WIRE THIS COLUMN DEFINES THE NUMBER OF MIRES PER CHANNEL USED IN THE SDAS. IGNAH PAGE POOR OR ALL 3 WIRE CHANNELS ARE AVAILABLE VIA A PRE-DEFINED CONFIGURATION.

E-13

QUALITY

5

REEDY CREEK UTILITIES

IP 7933707

1/26041 RFV

13

COLUMN 7. (MULTIPLE DATA SETS)

THIS COLUMN CONTAINS FOUR DATA SETS AS DEFINED BELOW:

1 -

OPERATING RANGE - THE FIRST LINE OF THIS COLUMN DESCRIBES THE OPERATING RANGE OF THE PARAMETER IN ENGINEERING UNITS.

SENSOR OUTPUT RANGE - THE SECOND LINE OF THIS COLUMN DESCRIBES THE OUTPUT RANGE IN VOLTS OF THE SENSOR.

SDAS GAIN - THE THIRD LINE OF THIS COLUMN DESCRIBES THE SDAS GAIN SELECTED FOR EACH CHANNEL.

ACTUAL OPER RANGE - THE FOURTH LINE OF THIS COLUMN IS APPLICABLE TO ABSOLUTE TEMPERATURES ONLY (AFTER CORRECTION COEFFICIENTS ARE APPLIED.)

COLUMN 8: (MULTIPLE DATA SETS)

۲

4

THIS COLUMN CONTAINS THREE DATA SETS AS DEFINED BELOW:

MICROBRD TYPE - THE FIRST LINE OF THIS COLUMN DESCRIBES THE TYPE OF MICROBOARD USED FOR SIGNAL CONDITIONING OF THE EMPLOYED SDAS CHANNEL.

MICROBRD P/N - THE SECOND LINE OF THIS COLUMN DESCRIBES THE PART NUMBER OF THE MICROBOARD USED FOR SIGNAL CONDITIONING OF THE EMPLOYED SDAS CHANNEL. A NON-DEFINED MICROBOARD P/N INDICATES THAT THIS CHANNEL SHARES A MICROBOARD WITH ANOTHER CHANNEL WHICH WILL DEFINE THE P/N.

SENSOR EXCIT - THE THIRD LINE OF THIS COLUMN DESCRIBES THE EXCITATION REQUIREMENTS FOR EACH SENSOR, IF REQUIRED.

INSTRUMENTATION PROGRAM AND COMPONENT. LIST:

REEDY CREEK UTILITIES

OF POOR QUALITY

IP 7933707

COLUMN 9. (MULTIPLE DATA SETS)

THIS COLUMN CONTAINS THREE DATA SETS AS DEFINED BELOW:

TEMP SERIAL #- THE FIRST LINE OF THIS COLUMN DESCRIBES THE TEMPERATURE PROBE SERIAL NUMBER (IF AVAILABLE).

SCALE FACTOR UNITS - THE SECOND LINE OF THIS COLUMN DESCRIBES THE ENGINEERING UNITS MAINTAINED IN THE COPS FOR EACH MEASUREMENT.

CDPS SCALE FACTOR -- THE THIRD AND FOURTH LINES OF THIS COLUMN DESCRIBE THE NUMERIC

SCALE FACTOR(S) USED IN THE CENTRAL DATA PROCESSING SYSTEM (CDPS) TO CONVERT EACH MEASUREMENT TO ENGINEERING UNITS.

COLUMN 10. (MULTIPLE DATA SETS)

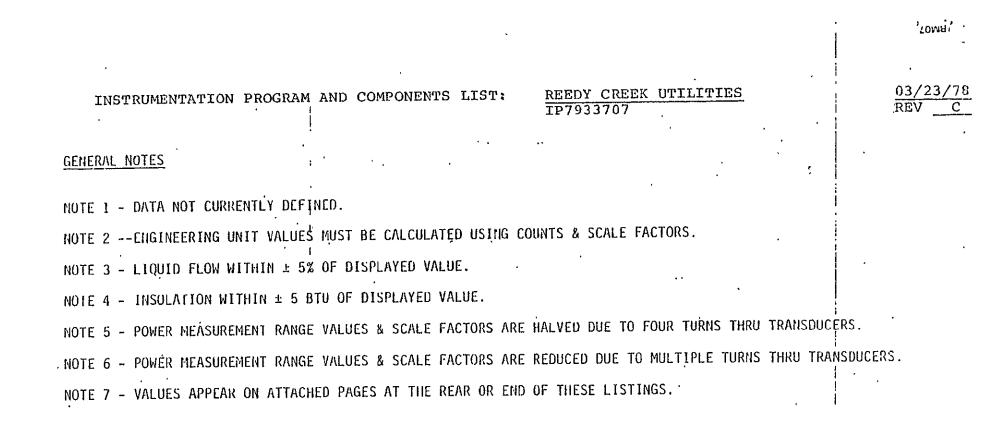
THIS COLUMN CONTAINS FOUR DATA SETS AS DEFINED BELOW:

"SENSOR TYPE - THE FIRST LINE OF THIS COLUMN LISTS THE TYPE (NAME) OF THE EMPLOYED SENSOR.

SENSOR MANUFACE - THE SECOND LINE OF THIS COLUMN, LISTS THE SENSOR MANUFACTURER.

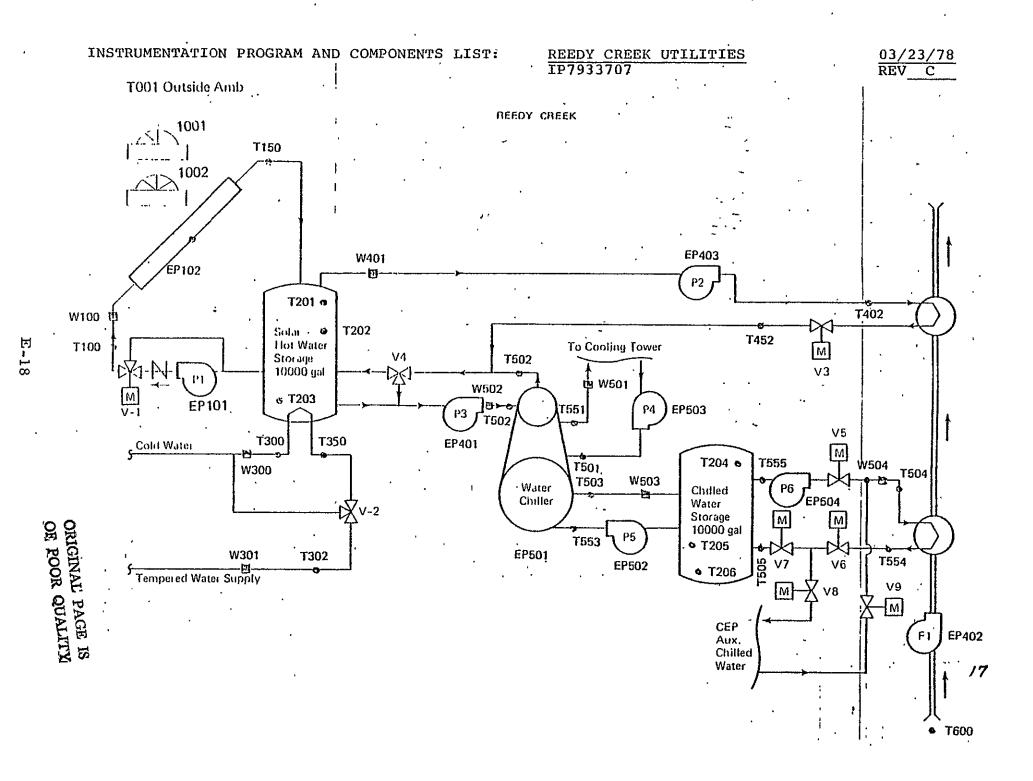
SERSOR PAR - THE THIRD LINE OF THIS COLUMN LISTS THE PART NUMBER OF THE SERSOR.

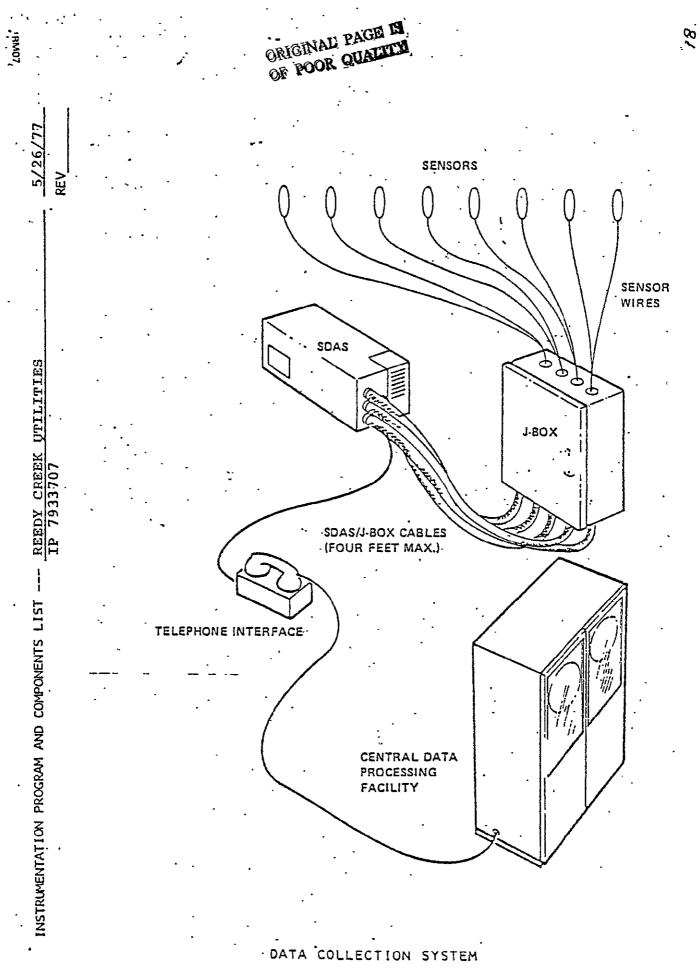
WELL P/IL - THE FOURTH LINE OF THIS COLUMN DESCRIBES THE PART NUMBER OF A THERMAL WELL IF REQUIRED FOR THE DEFINED SENSOR.


INSTRUMENTATION PROGRAM AND COMPONENTS LIST --- <u>REEDY CREEK UTILITIES</u> <u>5/26/77</u> IP 7933707 REV _____

COLUMN 11. (MULTIPLE DATA SETS)

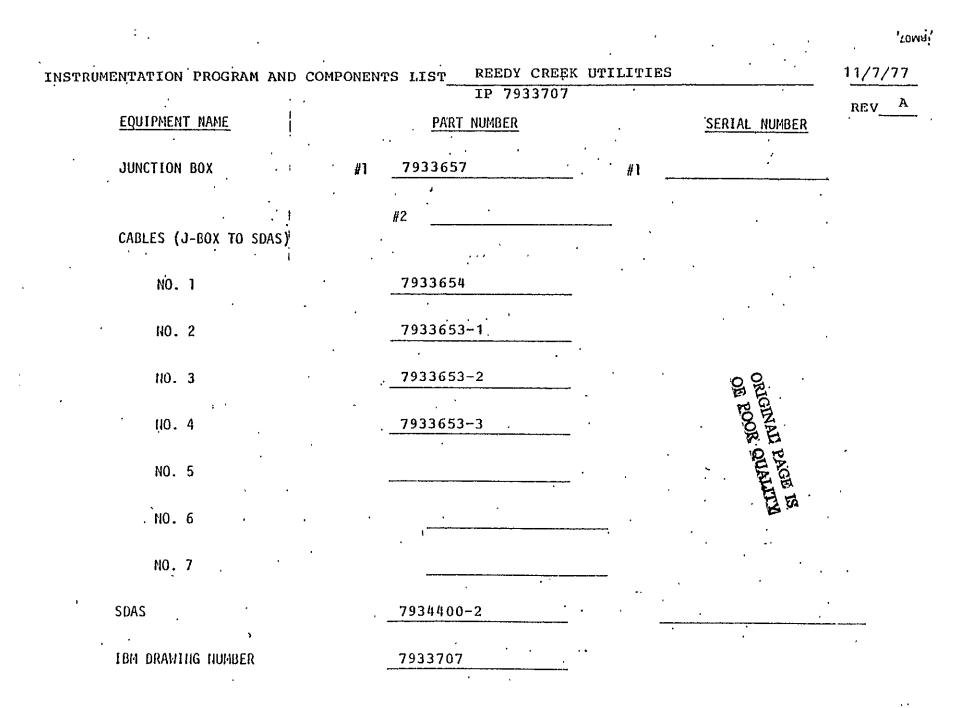
NOTES - THE FIRST LINE OF THIS COLUMN DEFINES ANY INFORMATION REQUIRED TO SUPPORT CLARIFICATION OF THE MEASUREMENT.


SERIAL # - THE SECOND LINE OF THIS COLUMN DEFINES AN ITEM UNIQUE SERIAL NUMBER MARKED BY THE MANUFACTURER.


CROSS SECTION AREA - THE THIRD LINE OF THIS COLUMN DEFINES THE CROSS SECTIONAL AREA OF A DUCT IN SQUARE FEET.

DRUGINALI PAGE IS DR ROOK QUALITY

E-17



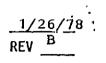
E-19

INSTRUMENTATION PROGRAM AND COMPONENTS	LIST	REEDY CREEK	UTILITIES		5/26/77
	· . · .	IP 7933707		- - -	• REV

INSTRUMENTATION COMPONENTS SECTION

E-21

	• <u>.</u>			
INSTRUMENTATION	PROGRAM AND COMPONENTS	LIST	REEDY CREEK UTILITIES	<u>. 5/26/77</u>
•	r		IF /555/07	REV


MEASUREMENTS SECTION

1

E-22

.

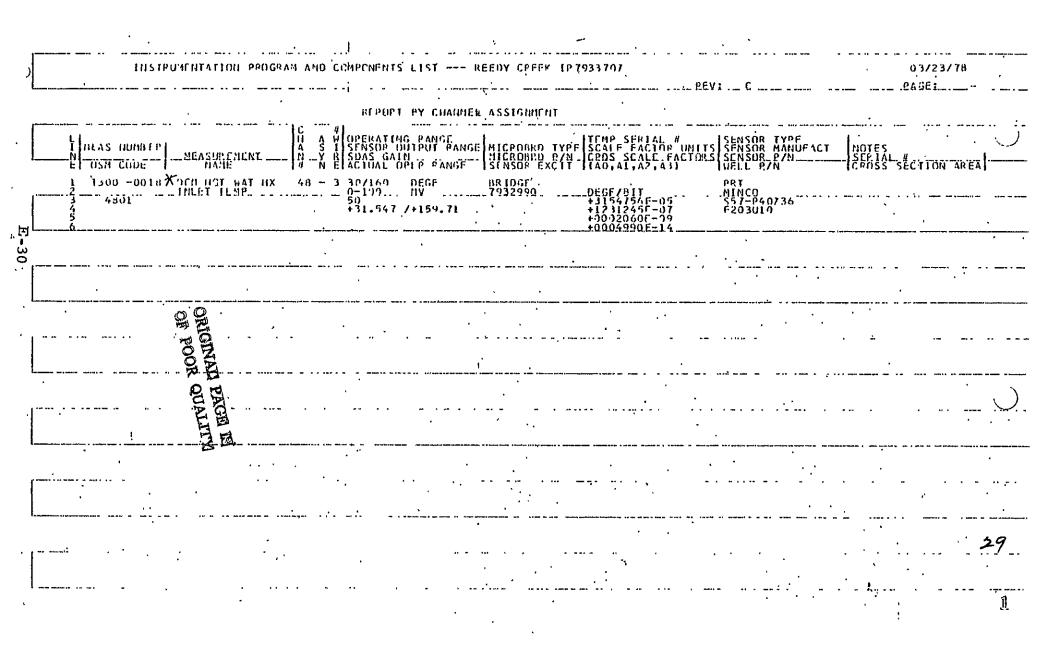
1

INSTRUMENTATION PROGRAM AND COMPONENTS LIST: REEDY CREEK UTILITIES **TP7933707** MEASUREMENT SUMMARY PARAMETER NUMBER WIND DIRECTION ELECTRICAL POWER 9 \$. **ELOWRATE (NATURAL GAS)** SOLAR FLUX ... HUMIDITY . SPARE (2) TEMPERATURE ..26 **DIFFERENTIAL TEMPERATURE** . FLOWRATE (LIQUID/AIR) . WIND SPEED TOTAL 115

1 22

	INSTRUMENT	VTION PROGR	AM AND C	омронент - і -	S 1157 A	РЕЕЛУ СРЕЕК. 197	933707	Vi. C		03/23/78 PAGE:7	
······	· · ·	• •		REPAR	T BY CHANNEL	AŞSIGNHENT			· .	·	•
I HEAS DU	DE DE DEAS	SUREMENT	C # H A W A S I NY.8 U N E	SPERATII SENSOR SPAS GA	NG RANGE DITPUT RANGE IN DECR RANGE	MICPORPO TYPE MICPURRO P/N SFNSOR EXCIT	TEMP SEFIAL # SCALE FACTOP UNIT CPDS SCALE FACTOP (40,41,42,43)	SENSOR TYPE SENSOR MANUFACT SENSOR PZN	NOTES SERIAL CPOSS S	TONTAREA	
1 [4.12 ~	1118 50466	E THEAT INC	02 - 3	130-210 2-100	DECE	881066 7932988	0013 -DEGF/UIT +322636F-05 +1947638E-07 +0904382F-09 -+0001620E=13	PR1 MINCO \$53P40236 F203ULA			
$ \begin{array}{c} 7 & 1452 \\ 8 \\ -9 \\ -10 \\ 11 \\ 12 \end{array} $	0018 SPAC ⁺ R+108	HEATING M TEMP		30/240 0-100 50 +32.632	0FGF MV 7+2 15, 74	8P IDGF 7932988	0306 DEGF/011 _+12631876-35 +10394276-37 +20043356-30	P# T 'IINCO \$53P40236 +203010			•
		ίχ ⁻ Ούτἰκτ	<u>04 - 3</u>	50	DFGF 11V /+236.71	NR 1056F 7932988	+)001598E-13 0007 DFGF/H1T +3226495-05 +1952995E-07 +0004406E-09	Рйт мінсп 554Р40236 £203010	****	· · · · · ·	
$ \begin{array}{c} 19 \\ 20 \\ 21 \\ 22 \\ 21 \\ 22 \\ 23 \\ $	UU 18. APKLA JATER	CONDENSES.	. 05 - 3		. DEGE		+0001645E-13 DEGE/NIT +3367169E-05 +1228937E-07 +0004931E-14	PRT 11NCO \$\$3540236 F2031115		·····/	·
25 EP101~ 		CTOR PUMP	6 A 30	0+4 _0-100	KN Y	STRAIGHT 	+0004031E-14 KW/BIT	WALT XOCP - UHLD SEMITROMICS_ PC5-6		· · · · · · · · · · · · · · · · · · ·	·, •
~ 29 , SP062-(30 31 32 	UO 18 XSPAPL	· • •	<u>07 - 3</u>		· · · · · · · · ·	SHORI 7932939	N/4 N/4	1/2	• • •		····· ·
34 35 1501 -(36 - 0801 37 - 0801 38 39 		CUADENSER 128 TAP		0-100 50	DFGF Hy /+1(2.34		0014 DEGE/HIT +3181548E=05 +12534016=07 +0002146E=09 +0005146E=09	рот Чилсо 537740236- Егозин5	· - · · ·	· · · · · · · · · · · · · · · · · · ·	23

. · INSTRUCTATION PROGRAM AND	COMPONENTS LIST (REEDY CREEK TP	7933707	*•	03/23/78 PAGE:
	PI-PORT BY CHANNE	L ASSIGNMENT	· · ·	· · · · · · · · · · · · · · · · · · ·	······································
L HEAS NUMBER MEASURE IENT NEASURE IENT NEASURE	VOPERATING RANGE I SENSOF OUTPUT RANGE P SDAS GAIN I E ACTUAL OPEP PANGE	E MICPOBRD TYP MICPOBRD TYP SENSOP FXFTT	TEMP SERIAL # ESCALE FACTOR UNI CPOS SCALE FACTO (AO, AL, A2, A3)	ITS SENSOR TYPE SENSOR MANUFACT IRS SENSOR P/N WELL P/N	NUTES SERIAL # CROSS SECTION AREA
	3 0-4 KW 0-100 HV 50	STRA16HT 7932985	- KW/BIT 0.0391005-07	WATT XDCR NHTO SEMITRUNICS PC5-6	
51000 7 1000 7 1000 7 1000	3 -20-120 DEGF 0-100 NV 59 -10.237 /+119.42	- 88 IDGE 7932986			
11 1100 -0010 COLLECTOR INLET 11 - 12	3 30-450 DFGF 0-100 MV 50 431.953 /+455.54	AR LOGE 7932987	0015 DFGF/BIT +3195260F-25 +3963622F-07 +0001553F-08	РЛТ — ЛГИСО 	······································
17 1150 -0018 COLLECTON APPAY 12 - 18 OUTLET TEMP 		BR 10GF 7932987	+0001261E-12 0009 DFGF/NIT +3163616F-05 +3915011F~37	РРТ МІЛСО - 553Р40236 - Г203U15	
21 22 23 T102 -0018 COLLECTOR SURFA 13 - 24 25 1303		BP IDGF "' 7932987	+00014996-08 +00011795-12 -: DEGE/RIT +3192878E-05 +39159715-07 	PRT MINCO \$344736 DC96-390	ORIGINAL OF POOR
28 29 T201 -0019 HU STOPAGE TANK 14'- 31 1403 34 34	3 30-450 DEGF 0-100 MV	BR 106F 7932987	+3001179F-12 * 0FGF/811* +3199874E-95 +3915971F-07 +3901499E-08 **0001177F-12	рет ПІЛСО 53191 807 36 F 20 3 U1 54	. QU
35 F202 -JULH HU ST IFACT TANK 15 - 36	3 30-459 DF0F 0-190 DV 50 +31,999 /+449,55	98 1265 7	05011/0F-12 050F/81T +3190976F-05 +3915071E-07 +0701499F-09 +0701499F-09	ррт Мікса 537180736 Г2030154	ALLEY IS


<u></u>					· · · · · · · · · · · · · · · · · · ·
Inst	RUNCHTATION PROGRAM	AND COMPONENTS LIST F	REEDY CREEK IP7933707	REV: C	03/23/78 PAGE:
-		PEPUPT RY CHAINFE	ASSIGNMENT		FABE: 3
	MEASUREMENT	I A WOPERATING PANGE A S I SENSUP OUTPUT RANGE Y R SDAS GAIN T'N'ELACTUAE OPER' RANGE	MICROBRO TYPE SCALE FACTOR MICRUBPD P/N. CPOS SCALE SFNSOR EXCIT. (A7,A1,A2,A	WILL PAN	NUTES SEPIAL # CROSS SECTION - AREA
1 W100 -0018 	. CULLECTOP APPAY 1	16 - 3 0-197+1 GPH 0-10 HV: 50	STPAIGHT 7932995 (GPN/BIT +5 VDC 0 +1947817F-0	FLOW METER Hamado MKV-3-Hoi	S/N-433/
5 <u>1300</u> -0019	DIN SOLAR1	17 - 3 0-9, 90	STRAIGHT 7932985 GPM/RIT +5 VDC 0- +5648390E-01	FLOW METER RAMAPO MKV-1-JO1 7 SOCT	- S/N-4215
$ \begin{array}{c} N &9 & 1301 & -0013 \\ 0 & 10 & 11 & 1871 \\ -12 & & \\ 12 & & \\ & & \\ \end{array} $	OHW SUPPLY 1 FLOW RATE	8 - 3 0-9.93 GPH 0-3.5 HV 50	STPAIGHT 7932985 6PH/BIT +5 VDC 0 +5608452E-01	FIOW METEP RAMAPO MKV+1−J01 7. SOCT	S/N-4230
13 1001 -001A 15 1922	COLLECTOR PLANE 'L	A 3 0/362.86 BTU/FT2-HP 0-12 MV 50	CAPACITOR	PYRONOM FPPLEY	15350F3
17 1554 -0018 18	CHILL H20 COTL 2 OUTLET TEMP	0 3 -20/120 DEGF 	AP LUGE 0010 79329296 7657811 71334917E-07 +1334917E-07 +1334917E-07 +0002330C-09	PRT NINCO 553P40Z36	
22 23 T504 ~0018 25 2100 '	CHILLED WATER ? SUPPLY IN TMP	50 00 00	+0006066F-14 0016 7932996 DFGF/BIX -1810160F-05	- PRT 41NCO 557040234	
27 28 129 TZOG -0018	CU_STORAGE TANK 2	2 - 3 -20-120 DEGF	+1333490F-07 +0002325E-09 +0006103E-14 BR1065.	F203U10	<u>، من </u>
30 31 2200 33 34	BOTTON TEMP	0-100 MV 50 -19.027_/+119.85	* 7932986 - 1902760F-36 + 133161E-07 + 0002326F-09 + 0002326F-09	F2030154	
35 <u>1302</u> - 091P 36 37 2302 38 39	оны счергу темр (2	3 - 3 30-310 DF3F 0-100 MV 50 +32.451 /+235.55	98 106F 0011 7932988 PF6F/81T +3245118F-05 +1939359F-07 F00054337F-09	РРТ МІЛСА \$53Р40236 £203010	25
40	•	· · · · · · · · · · · · · · · · · · ·			(, ,

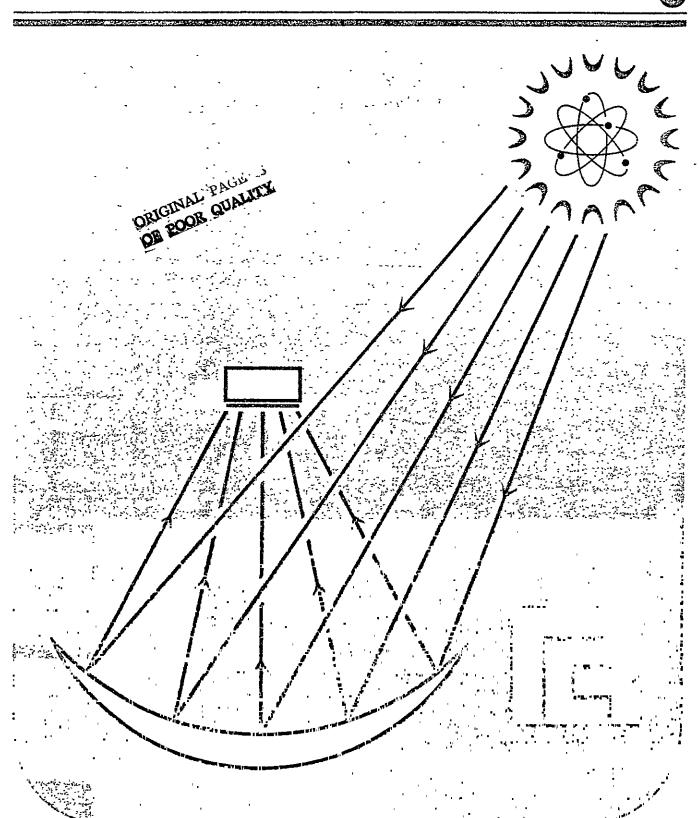
· · · · · · · · · · · · · · · · · · ·		· · ·			· · · · · · · · · · · · · · · · · · ·
) INSTRUMENTATION PROGRA	AM AND COMPONENTS ITST	PEEDY CREEK TP	1933707 <u>P</u> EV	· · ·	03/23/78
· · · · · · · · · · · · · · · · · · ·	PEPORT NY CHANNE	LASSIGNHERT	·	, ;	
I MEAS NUMBER MEASULEMENT	C HI HI A W UPERATING RANGE A S I SENSUR UUTPUT RANG N Y RISDAS GAIN N FLACTUAL OPER PANGE	E MICPOBRO' TYPE MICPOBRO' TYPE SENSOP TXCIT	TEMP SEPIAL # SCALE FACTOP UNITS CPDS SCALE FACTOPS (A0, A1, A2, A3)	SENSOR TYPE SENSOR MANUFACT. SENSOF P/N	NOTES SERIAL CROSS SECTION AREA
1 LP504-0318 CHILLED WATER 2 NUTE 2 COIL PUNP_PWP 4	24 A 3 0-4 KH 	STRA 1GHT 7932995	-K4/81T	WATT XOCR CHIU SEMITEONICS. PC5-6	· ····································
5 W502 -0018 APKLA 11W 6 FLOW PATE 7 2503 8	<u>25 - 3 0-120.3 GP4</u> 0-10 MV		6PM78T1 0. +1189851E-05 \$90T	- FLOW METER FAMAPO MKV-2-1/2W01	-SZN-4314
9 6503 -0018 ARKLA EVAPOR 10 6470 WATCH FLW RTE 11 2000	26 - 3 0-195.26 GPM 0-10 NV 59	STRAI-GHT 7932985, +5 VDC	CPM/NTT 0. 	FLOW METER RAMAPO 11KV-3-W01	S/N-4340
E 13 SPOUL-UDIR SPARE	27 - 3 11/A N/A	SHORT 7932918	, N/A	N/A : N/A	· · · · · · · · · · · · · · · · · · ·
16 19 1502 -0.11 APKLA GEN MATER 20 INLET TEMP 21 2802 22 23 24		BR 10GF 7932988	0317 DEGE/811 +3193938E-05 +1932938E-07 +0904207E-09	РКТ МІЛСО 557Р40736 Е203010	······································
24 25 1552 -001A APKLA OEN NATER 27 2902 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	<u>29 - 3.30/230 DEGF</u> <u>0</u> -130 MV 50 +31.533 /+234.62		+0001554F-13 DEGF7017 +3150315F-05 +1939477F-07 -+0004370F-03 -+0004570F-13	ρρτ_ Ч1000 553940236 F203010	OF FOOR
31 EP401-0018 HU SUPPLY PUMP 32 ROTE 2 33 ROTE 2 34	30 A 3 0-4 50 100 - MY	STRAIGH 7932985	 	WATT XOCR GHIO SENITFONICS_ PC5-6	QUALT
35 1503 -0018 APKIA CHILLED 36 WATCP OUT TWP 37 3101 38	31 - 3 30-140 BFGE 0-100 MV 50 +30.632 /+159.63	3P 196E 7932990	0018 D56F/817 +3063262E-05 +1239067E-07 +0732591E-39 +005249E-15	₽°T MINCO \$57₽40736 F>03115	
181107					1 <u>1</u> 26
1 4 0	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	+00077266-09 +00760478-14	· <u>·</u> ····	• · · · · · · · · · · · · · · · · · · ·

ا ^ر		1 L 9 L	nia telati kuanude	A A 1273	ССМРД . Т.	H. 11 5	41%f P		•	V: Ç	037. 2496:	23778 :
					÷11	505J	BY CHAMPEL	ASSIGNUENT		, .,	*/*** * w```***	, .
	21	ESS LALINA TSF C.DC	MASTEPENT TATE		- 3C.T	- 14 II 14 - 31	TER PANSE	- MICPUNRD TYP MICRORPD 27N SENSOR EXCIT	1399 SIDIAL 9 ESCALS FACTOR 1911 C35 SLAF FACTOR (A)+A1+A2+A3	STASED TYDE STASED MARDENCT STASER DAY NTLE PAY	SELLA *CTIC	NI AREA
	しいろうりん	320) 320)	KARKIA ("MELLED ANTE : PLTU-N	12 -	* 30/1 1-11 50, * * */*	11	DF6F VV /+167.42	вя 100г 79 12900 1		06 T 34 F C 3 55 4 P 4 0 7 37, F 2 0 311 1 5	:	
s 	7 3 9 10	१३९८ - ७३१२ ३३४५	DEFINITE PLANE	33 A	3 0/12	9.97	B TURE 12-HP	CAPACI 10P 7934363	"/f2-H/"11 0. 3.1003417	PYLONGM EDDLEY YSO	- · 1527313	
		0421 -00137 NGTE 2	Fine Crit, Supply	34 -	3 0/4. - 0-15 - 55	47	021 27	STPAIGHT 7132115 +5 VOC	. Gon/817 0 + 1973412 - 50°T	FLDG METTER PINADO - 246 V-1-1/4371	4509	',,
1.	16 17 1月	42-1)E -7331-1 3234	3-413 6-340 AMERILA (TE	3*3	3 1-1 - 0-10 51		.,е.т ЧV	510413HF 7932985 +5 VUC	628731T 0. • • 147504+ 5-05-5001	етн., метер Балеро Мк V-3- W01	5114-4634	· · ·
,	20 21 22	n ()+ -001+ (, F(, 2	THEFT Y WATER SUPPLY FLWRTE		3 0-/50 0+10 51		С.2% ЧV	57831887 (በር። ዝግዝድ የ አንትው። የ እና የተሰረጉትን የ	171,04511	
1	2347 2777 247	12.25	4. (1:46) TANK SUITTS TEND		() - 1, 1 (5 ') + 111, (usu V V	1884 My +447,55	90 1064 7932087	053*2417 *31397*(-)5 *301*3717-17 *13314-05 *13314-05 *13314-05	001 (1904) (630190246 F2030154		۲ – ۲ «۲۰۰۰ پیرو» (
	30) 34 32 33 34	I ,+ -,111 + }	A D D D AD	¶34 - 1	5.57	•	04 CT 8V + 11 3, 8%	49 1926 793 - 995 -		947 1996 B 5539 B 5559		
	35 1 36 37 38 34 40	र राज्य - अन्त्रम् । कुरान्द्र ।	ີນເງິນ <u>ຊີ</u> ⊭ນວ		4	•	11 1 MY 4110,87	79320	D= 35 /071 -10 (374, 15 - 35 +13 (31 31 + 37 +(5) 33 (31 + 37 +(5) 33 (5 - 5) +(5) 33 (5 - 75 - 34	1997 1977 1959: 2019 (1777) 1997 (1777) 1997 (1777) 1997 (1777)	•	27

A STATUS AND A STATUS AND A STATUS A STATUS AND A STATUS · · · ·

-	. IN STR	PATNEATION PROGRA	M AND C	UMPONENTS	6 LIST R	FEDY CREEK IP				03/23/78 -
			, 					<u>ÝFV: C</u>	<u>.</u>	40F:
•				KE POF I	BY CHANNEL	ASSIGNMENT	•		•	
1 	NEAS NUMBER	MEASIREMENT	H A H A S I H Y R H Y R	ACTUAL	IG RANGE HITPHT RANGE N DER PANGE	MICROURD TYPE MICROURD P/N SENSOR FXCIT	TEMP SERIAL # F SCALE FACTOR UNI CPDS SCALE FACTO (40, A1, A2, A3)	SENSOR TYPE TS SENSOR MANUFACT PS SENSOR P/N WELL P/N	NUTES SERIAL # CROSS SE	CTION ARFA
• • • •	1505 ~0018 5'''' 4000''.	CHILLED WAT TH DUTLET TEYP		-20/120 0-100 50	DEGE	BR I DGE 7932986	0014 DFGF/BIT 1906364E-05 +1332947E-07 +0002325E-07 +0006075E-14	PQT MINCO 557-P40236 F203415	*. 	
10 11 12)	CHILLED WATER TANK PETHEN TEMP		-20/120 0-100 50 -18.878	2417	BRIDGF 7932986	DEGF/BIT -18878491-05 +1311262E-07 +002319E-09 +0005899E-14	PR1 HINCO \$53P40736 F203015		· · · · · · · · · ·
	T600 001∏ 4201	RETUPNTATE TEMP	-47 -= 3	0-100 50	DFGF MV /+159.84	B&IDGE 7932990	0004 0EGF/B1T +3227312F-35 +1225723F-07 +0002039F-09 +0004923E-14	- PPT	· · · ·	· - · · · · · · · · · ·
	4394	INTERNAL ARP RECTP FAN PWR	.43.A 3	0-8 0-100 50	. Ки NV	5'TRAIGHT	KW/911 0. +00782016-07	WATT XOCR OHIO SFMITRONICS PC5-15		
24	•	HN COLL SUPPLY PHEP POWER	44 A 3	050 0-50 50	KW MY	STRAIGHT 7932985	Ки/віт 9 <u>+900</u> 97655=27	WATT XOCR - OHIO SEMITROMICS PC5-1	· · · · ·	GINAL
27	4540	AFKLA'CHILLER OPTPATING PHR	45 A 3	050 0-50 50	in∧ KA · · ·	STPA1GHT- 7932985	KW/BIT 0. +9099765E+97	HATT XOCP UNIO SEMITRONICS PC5-1	•••	PACE
31 	NOTE 2	APKLA CHILLED	46 A 3		К W МУ 	STRA LGHT 7932985		HID SFHITRUNICS	·, 	
39 36 37 38	4744	COMPENSER WATER	47 <u>,</u> A 3	0-0 0-100 50	ыл	STPATCHT 7932985	KW/BIT A. +0073201E-07	WALT XOCE , OHID' SEMIFRONICS PC5-15	• • • •	28

ORIGINALI PAGE IN OF POOR QUALITY


APPENDIX F .,

SOLAR ACCEPTANCE TEST

DISNEY WORLD SOLAR PROJECT

ACCEPTANCE TEST

Contract E (49-18) 2401

B second results and second s second sec

TABLE OF CONTENTS

-

.

SOI	LAR S	YSTE	M ACCEPTANCE TEST	ORIGINAL PAGE IS OF POOR QUALITY	Page <u>NO.</u> F-6						
А.	Subsystem Test										
	1.	Collector/Hot Water Storage Tank Energy Transport System									
		ь. с.	Integrity of Insta Leak Test Calibration of Ins Functional Test		F-6 F-7 F-7 F-8						
			 Tank (T-1) Is Drain Valves Collector Pur Flow Distribution Collector Air 		F-8 F-8 F-9 F-9 F-10						
	2.	Hot Tan	Water Storage Tank k (T-3)	(T-1)/Compression	F-10						
		b. c.	Integrity of Insta Leak Test Calibration of Ins Functional Test		F-10 F-11 F-12 F-13						
			(1) Compression 7 Valves	ank Pressure Regulating	F-13						
	3.	Sol	ar Collectors		F-14						
		a.	Installation Integ	rity of Components	F-14						
			 Receiver Posi Screwjack Str 		F-14 F-14						
			(Figure 1 and	llA)	F-15						
		b. c. d.	Receiver Focus Torsion Bar Collector Sun Sens	or	F-16 F-16 F-16						

TABLE OF CONTENTS (Continued)

.

			Page NÖ.
	4.	Solar Hot Water Transport System For Space Heating	F-17
		 a. Integrity of Installation b. Leak Test c. Calibration of Pressure Gages & Thermometers d. Functional Test 	F-17 F-18 F-18 F-19
		(1) Space Heating Pump (PHWA-6ZE)(2) Manual Air Vent	F-19 F-20
	5.	Solar Hot Water Transport System For Space Cooling	F-21
		a. Integrity of Installation b. Leak Test c. Calibration of Pressure Gages & Thermometers	F-21 F-22 F-22
	6.	Collector Fluid Flow Control System	F-23
		a. Integrity of Installation b. Calibration of Thermometers	F-23 F-23
в.	Sys	tem Operational Test	·F-24
	2.	Collector Flow Control System Hot Water Compression Tank (T3) Solar Hot Water Transport System For Space Heating Solar Hot Water Transport System For Space Cooling	F-24 F-25 F-26 F-27
HVA	C		F-28
А.	Sub	system Testing (Functional Testing)	F-28
	1.	Space Heating	F- 28
		a. Pump (PHWA-6ZE) & Hot Water Circuit b. Air Handling Equipment (AH-6ZE) c. Controls	F-28 F-28 F-29
	2.	Space Cooling	F-29
		a. Arkla Chiller (CH-10ZE)	F-29

•

II.

TABLE OF CONTENTS (Continued)

-

		· · ·	Page NO.					
	b	. Condenser Water Circuit	F-30					
		<pre>(1) Pump (PCW-10ZE) (2) Controls</pre>	F-30 F-30					
	с	Chiller Pump (PCH-10ZE) and Circuit To T-2 Tank	F-31					
	d	. Chilled Water Tank (T-2)	F-3 1					
	e	 Chilled Water Pump (PCHA-3ZE) and Circuit to Air Handler (AH-6ZE) 	F-32					
	f	Air Handler (AH-6ZE)	F-32					
	g	. Controls	F- 33					
в.	System Operational Testing							
		pace Heating System Space Cooling System	F-33 F-34					

F-34

III. DOMESTIC HOT WATER SYSTEM

-

F-5

I. SOLAR SYSTEM ACCEPTANCE TEST

A. Subsystem Test

ς.

- 1. Collector/Storage Tank Energy Transport System
 - a. Integrity of Installation
 - Purpose: To determine if all fluid loop components have been included and properly installed per the complete Disney World Mechanical Specification.
 - Method: Visually compare installation and component manuals with D/W drawings and design specification.
 - o Results:
 - 2/24/78 Relocated bypass to bottom of check valve on solar system piping.
 - 2/24/78 Relocated two RTD's in chilled water system at IBM's direction.
 - 3/08/78 Changed out flow meter in hot water line to air handler at IBM's direction.
 - -3/14/78 All other piping was properly installed as per drawings and specifications.

- b. Leak Test
 - Purpose: To determine if any water leaks exist in loop when pressured to 150 psi.
 - Method: Pressurize loop only to 150 psi for four (4) hours. Must not leak.
 - o Results: Complete No leaks

- c. Calibration of Pressure Gages & Thermometers
 - o Purpose: To insure that all gages and thermometers are indicating properly.
 - Method: Calibrate gages (must be within +2 psi and thermometers within +2°F) utilizing pressure and temperature standard or ice water and hot water bath.
 - Results: Complete All gages and thermometers tagged and dated.

- d. Functional Tests
 - (1) Tank (T-1) Isolation Valves
 - o Purpose: To determine if valves isolate tank from collector circuits with no leaks.
 - o Method: Close isolation valves, depressurize all loops interconnected with tank, and pressurize tank to 150 psi for four (4) hours thru tank air drain. Tank must not leak.
 - o Results: Complete No leaks

- (2) Drain Valves
 - o Purpose: To determine if valves will properly drain system.
 - Results: Complete The system was flushed, filled, and drained before the hydrotest.

- (3) Collector Pump & By-pass (PHWA-4ZE)
 - Purpose: To determine if main throttle valve and by-pass has been properly adjusted with respect to pump and collector flow and electrical load on pump.
 - Method: Utilize pump FMD and collector FMD to determine pump 50/collector 3.125 flows, measure resistance of circuit 11 feet and measure ampere draw by pump motor amps. Compare with published pump data.
 - o Results: Complete 4.5 Amp

- (4) Flow Distribution in Collector Array
 - Purpose: To determine-if circuit setters in the fluid loop have been properly adjusted to provide for equal <u>+1</u> gpm through each collector.
 - Method: Utilizing portable manometer type flow meter, measure the flow in each collector.
 - Result: Complete Equal pressure at both ends.

- (5) Collector Air Elimination Devices
 - Purpose: To determine if air elimination devices will function properly.
 - o Method: Per operation instructions; open air elimination devices and bleed air.
 - o Results: Complete

- 2. Hot Water Storage Tank (T-1)/Compression Tank (T-3)
 - a. Integrity of Installation
 - Purpose: To determine if all fluid loop components have been included and properly installed per the completed mechanical specification.
 - Method: Visually compare installation and component manuals with drawings and design specifications.
 - Results: Complete The system has been installed to the drawings and specifications.

b. Leak Test

- Purpose: To determine if any water leaks exist in loop v.k. pressurized to 150 psi.
- Method: Pressurize loop only to 150 psi for four (4) hours. Must not leak.

.

o Results: Complete - No leaks

.

ORIGINAL PAGE IS OF POOR QUALITY

,

-

- c. Calibration of Pressure Gages & Thermometerso Purpose: To insure that all gages and thermometers are indicating properly.
 - o Method: Calibrate gages (must be within +2 psi and thermometers within +2°F) utilizing pressure and temperature standard.
 - o Results: Complete All gages and thermometers calibrated, tagged, and dated.

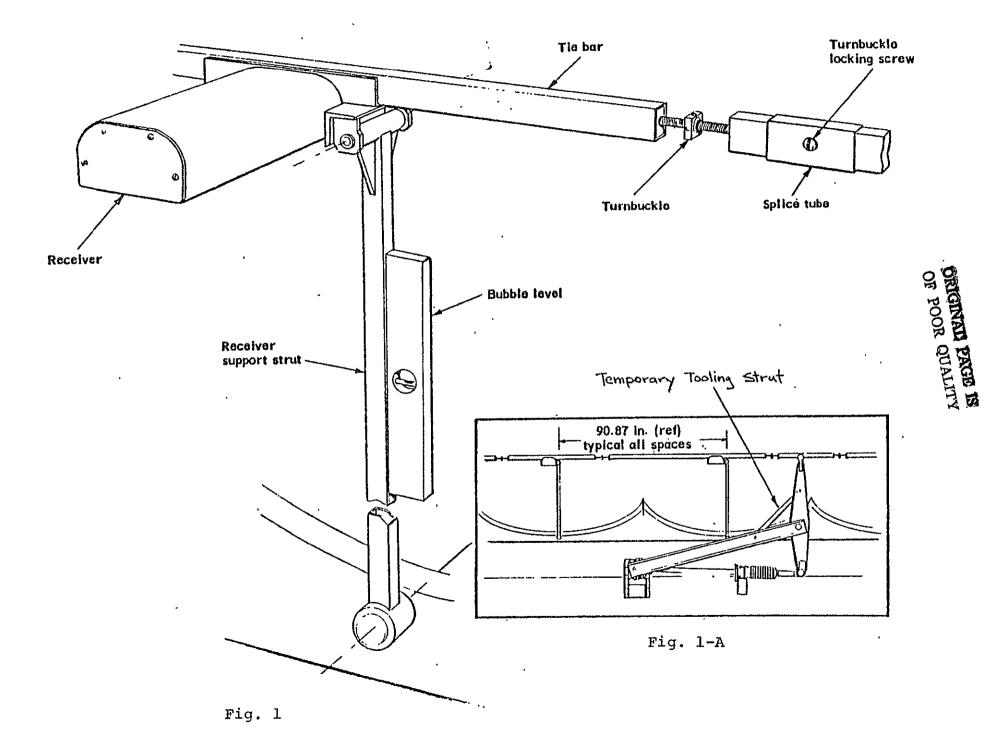
d. Functional Test

.

- (1) Compression Tank Pressure Regulating Valves
 - Purpose: To determine if the air and water pressure regulating values are set for 40 +2 psi and are operating properly.
 - Method: Install hydraulic-type pressure gage on tank. By alternating closing off air and water and draining tank of air/water, both valves can be checked by noting pressure on gage and noting water level in sight gage.
 - Result: Complete There has been a problem in balancing the air regulator, water regulator, and the Clayton dump valve. As of 3/13/78, the system is working properly.

F-13

. ·


3. Solar Collectors

- a. Installation Integrity of Components
 - (1) Receiver Position Completed

The receiver position should be checked with the drive arm in its vertical position. The drive arm can be oriented properly by using the temporary tooling strut as shown in Figure 1A. Each receiver support can then be checked with a level to see that the receivers are also in the vertical position and that the parallelogram is properly aligned.

(2) Screwjack Stroke - Completed

The screwjack drives the receiver array through the drive arm. The limit switches mounted on the screwjack motor should be set to insure proper travel of the drive arm. The travel for the arm should be 48° north of vertical and 42° south of vertical to provide a total stroke of 90°. This arm rotation will correspond to a screwjack stroke of 39-1/2". The proper travel is shown in the following sketch.

b. Receiver Focus - Completed

In order to achieve the maximum system performance, it is important to insure that the receivers are adjusted properly with regard to the reflector focal point. This focal point varies in position, size and density depending on the sun angle. The proper receiver adjustment, then, is the position at which the total absorbed heat over the complete operating stroke for the entire receiver array is at a maximum.

This can best be checked by noting the illuminated area on the underside of each of the receivers at various times of the day. If some or all of the units show a tendency for this illuminated area to favor one side or the other of the target (receiver glass) over the period of a full day's travel, then there is a need for further adjustment. If the amount of drift of the illuminated area from one side to the other is roughly equal and the losses on each side are about the same for each receiver at all sun angles, then the receivers can be considered properly focused.

c. Torsion Bar - Completed

The torsion bar counterbalance for the receiver array relies on a friction clamp to transmit torque from the torsion bar to the channel assembly. To insure that this friction clamp is not slipping, the following check should be made. With the drive arm in the vertical position, an index mark should be placed on the torsion bar and a matching mark on the friction clamp collar. The receiver array should then be run to the north stop, 48° off the vertical. If the index marks are still in line, then the torsion bar is working properly.

d. Sun Sensor - Completed

In order to move the receiver array into the maximum focal point as the sun's angles change, the sun sensor is located on Receiver No. 1. The sensor is tied to the control console and has been adjusted with a separate written procedure.

This can best be checked by noting the illuminated area on the underside of each of the receivers at various times of the day. If the illuminated area favors one or the other, over a period of two full day's travel, then there is a need to recalibrate with the written procedure. When the amount of drift of the illuminated area from one side to the other is roughly equal and the losses on each side are about the same, the receivers can be considered properly focused.

- 4. Solar Hot Water Transport System For Space Heating
 - a. Integrity of Installation

- Purpose: To determine if all fluid loop components have been included and properly installed per the mechanical specification.
- Method: Visually compare installation and component manuals with drawings and design specifications.
- Results: Complete The system is in agreement with the specifications and drawings.

- b. Leak Test
 - o Purpose: To determine if any water leaks exist in loop when pressurized to 150 psi.
 - Method: Pressurize loop only to 150 psi for four (4) hours. Must not leak.
 - o Results: Complete No Leaks

- c. Calibration of Pressure Gages & Thermometers
 - o Purpose: To insure that all gages and thermometers are indicating properly.
 - Method: Calibrate gages (must be within +2 psi and thermometers within +2°F) utilizing pressure and temperature standard.
 - o Results: Complete All gages and thermometers have been calibrated, tagged, and dated.

- d. Functional Test
 - (1) Space Heating Pump (PHWA-6ZE)
 - o Purpose: To determine if pump is performing per specification and is properly throttled
 - Method: Manually start pump and open hot
 water coil control valve. Note the flow from the FMD, the circuit resistance from the pressure gages and measure the ampere draw by pump motor.
 - o Results: Complete 7 GPM and 4.6 Amps at 110V.

- (2) Manual Air Vent
 - Purpose: To determine if this vent removes air from circuit.
 - Method: With pump stopped, open valve until water flows from vent, then close. With pump running, check hot water coil for gurgling noise.
 - o Results: Complete

- 5. Solar Hot Water Transport System For Space Cooling
 - a. Integrity of Installation
 - Purpose: To determine if all fluid loop components have been included and properly installed per the completed mechanical specification.

- Method: Visually compare installation and component manuals with drawings and design specifications.
- Results: Complete The system is in agreement with the drawings, specifications, and manuals.

- b. Leak Test
 - o Purpose: To determine if any water leaks exist in loop when pressurized to 150 psi.
 - o Method: Pressurize loop only to 150 psi for four (4) hours. Must not leak.
 - o Results: Complete No Leaks

- c. . Calibration of Pressure Gages & Thermometers
 - Purpose: To insure that all gages and thermometers are indicating properly.
 - o Method: Calibrate gages (must be within + 2 psi and thermometers within +2°F) utilizing pressure and temperature standard.
 - o Results: Complete All gages and thermometers have been calibrated, tagged, and dated.

- 6. Collector Fluid Flow Control System
 - a. Integrity of Installation
 - Purpose: To determine if all control circuit components have been included and properly installed per the completed mechanical specification.
 - Method: Visually compare installation and component manuals with drawings and design specifications.
 - Results: The system is in agreement with the drawings and specifications.

- b. Calibration of Thermometers
 - o Purpose: To insure that all thermometers are
 indicating properly.
 - Method: Calibrate thermometers within +2°F utilizing pressure and temperature standard.
 - Results: Complete All gages and thermometers have been calibrated, tagged, and dated.

- B. System Operational Test
 - 1. Collector Flow Control System
 - o Purpose: To determine if system (Operation of collection pump - PHWA-4ZE) is functioning properly with regard to the following operating modes:
 - Pump Start-up: Pump starts when the collector surface temperature is 20 +2°F above temperature of tank bottom.
 - If collector pump can maintain a Δt of 0.5° +2°F or more, pumping continues.
 - If not, pump shuts down and repeats start-up procedure.
 - Method: Record collector surface temperatures, tank bottom temperatures and collector st during pump operation.
 - Results: Complete There are four (4) surface temperatures taken and any two (2) will start the pump with a st of 20° ± 2°F above the temperature of the tank bottom.

- 2. Hot Water Compression Tank (T3)
 - o Purpose: To determine if the compression tank is operating properly with respect to the expansion and contraction of the water in the hot water fluid loop.
 - Method: Install pressure gage on tank and observe compression tank controls during periods when loop fluid is expanding or contracting.
 - Tank pressure should remain at 40 +2 psi.
 - Water level in tank as seen through sight gage should be maintained at a level prescribed in pressure-level controller manual.
 - Results: Complete There has been a problem in balancing the air regulator, water regulator, and the Clayton dump valve. As of 3/13/78, the system is working properly.

- 3. Solar Hot Water Transport System For Space Heating
 - o Purpose: To determine if the pump is properly interconnected with HVAC system.

•

- o Method: Increase temperature setting of space thermostat until pump starts.
- o Results: Complete

• ,

- 4. Solar Hot Water Transport System For Space Cooling
 - Purpose: To determine if throttle valve and by-pass have been properly adjusted with respect to flow to chiller (CH-10ZE).
 - o Method (for back pressure relief valve): Drain chilled water tank (T-2) sufficiently so that chiller will start when the necessary hot water is available from hot water storage. With the pump/chiller running, open and close the chiller throttle valve and record the flow and the pump electrical data and compare with operating data in Arkla manual.
 - Results: Complete It was not necessary to drain any of the chilled water since the temperature was high enough to let the unit start. 90 GPM 4.5 Amps

II. HVAC

- A. Subsystem Testing (Functional Testing)
 - 1. Space Heating
 - a. Pump (PHWA-6ZE) & Hot Water Circuit
 - o Purpose: To determine if the pump has the proper direction of rotation and supplies the required GPM to the heating coil.
 - Method: Visually check to see if the rotation is the same as shown on the pump casing. The GPM will be checked with a flow meter.
 - o Results: Complete 7 GPM

- b. Air Handling Equipment (AH-6ZE)
 - o Purpose: To determine if the air handling equipment will supply heating to the office space.
 - o Method: Place thermostat at a temperature that requires heating. Visually check inlet and outlet damper for each zone to be sure the cooling dampers are closed and the heating and return air dampers are open. The economy cycle should not be operating.
 - Results: Complete One damper indicator was reversed, so the damper was readjusted.

- c. Controls
 - o Purpose: To determine if the air heating controls function properly.
 - Method: Check modulating control valve by changing thermostat setting. Check inlet water and outlet water temperatures and hot deck setting to be sure valve is functioning properly.
 - Results: Complete We tried several different hot deck temperatures, but ended up back at 100°F, where Honeywell had set it.

2. Space Cooling

a. Arkla Chiller (CH-10ZE)

- o Purpose: To determine if the Arkla functions properly.
- o Method: The unit should be placed in operation at the direction of a factory representative.
- o Results: Complete January 7, 1978

- b. Condenser Water Circuit
 - (1) Pump (PCW-10ZE)
 - o Purpose: To determine pump direction and GPM.
 - o Method: Visually check rotation. Check GPM with flow meter.
 - o Results: Complete 90 GPM

(2) Controls

- Purpose: To determine if the controls will limit the condenser water temperature a minimum of 70°F.
- Method: Operate the condenser water system and Arkla when the cooling tower water is less than 70°F.
 Visually check mixing valve and thermometers in the system.
- o Results: Complete

- c. Chiller Pump (PCH-10ZE) and Circuit to T-2 Tank
 - Purpose: To determine pump direction, GPM and operation of valves and control in piping to Tank T-2.
 - Method: Visually check pump direction.
 Use meter to check GPM. Check location of valves and controls with drawings and operate each to be sure the seats are clean.
 - Results: Complete 90 GPM
 Throttled to 60 GPM, the motor average was high 3.1 Amps. The name plate indicates it should be 2.6 Amps. The motor was returned to the manufacturer and tested. The motor test proved satisfactory and is in warranty at 3.1 Amps.

- d. Chilled Water Tank (T-2)
 - . o Purpose: To determine if the piping to Tank T-2 has any water leaks. Tank T-2 was hydrotested before installation.
 - o Method: Pressurize loop only to 150 psi for four (4) hours. Must not leak.
 - o Results: Complete No Leaks

- e. Chilled Water Pump (PCHA-3ZE) and Circuit to Air Handler (AH-6ZE)
 - o Purpose: To determine if the pump has the proper direction of rotation and supplies the required GPM to the cooling coil.
 - Method: Visually check pump rotation as shown on the pump casing. Check the GPM flow with a flow meter.
 - o Results: Complete 35 GPM

f. Air Handler (AH-6ZE)

- o Purpose: To determine if the air handling equipment will supply cooling to the office space.
- Method: Place thermostat at a temperature that requires cooling. Visually check inlet and outlet dampers for each zone to be sure the heating dampers are closed and the cooling and return air dampers are open. The economy cycle may operate if conditions are proper.
- Results: Complete The economy cycle had to be redesigned and altered before it would operate as required by the specifications.

- g. Controls
 - o Purpose: To determine if the air cooling controls function properly.
 - Method: Check modulating control valve by changing thermostat setting. Check inlet and outlet temperatures and cold deck setting to be sure valve is functioning properly.
 - o Results: Complete

- B. System Operational Testing
 - 1. Space Heating System
 - 'O Purpose: To determine if the heating system functions properly.
 - Method: Set all controls in automatic and adjust thermostat to require heating.
 Observe temperature in space and thermostat setting to be sure they become equal.
 - o Results: Complete

- 2. Space Cooling System
 - o Purpose: To determine if the cooling system functions properly.
 - Method: Set all controls in automatic and adjust thermostat to require cooling.
 Observe temperature in space and thermostat setting to be sure they become equal.
 - o Results: Complete

III. DOMESTIC HOT WATER SYSTEM

- o Purpose: To determine if the automatic temperature control on the domestic hot water is functioning properly.
- o Method: Determine water temperature in bottom of hot water storage tank. Check setting on automatic control. Open water faucet and measure outlet temperature.
- o Results: Complete 120°F

APPENDIX G

-

OPERATION AND MAINTENANCE MANUAL

•

OPERATION AND MAINTENANCE MANUAL REEDY CREEK UTILITIES CO., INC.

CEP SOLAR BUILDING

April 1978

OPERATION AND MAINTENANCE MANUAL

REEDY CREEK UTILITIES CO., INC.

CEP SOLAR BUILDING

Title

.

CAU	CION	(Potential Hazardous Conditions)	G - 5
Ι.	Oper A.	cating Instructions Initial Adjustments 1. Receiver Focus 2. Screw Jack (Limit Switches) 3. Controls (Sun Sensor) 4. Circuit Setters	G-6 G-6 G-9 G-10 G-10
II.		Libration Sun Sensor	G-11 G-12
III.		stems Tests Collector 1. Turn On and Focus 2. Turn Off 3. Overheat	G-15 G-15 G-15 G-15 G-16
		. Chiller Control l. Set Up 2. Switch Test 3. Logic Test	G-17 G-17 G-17 G-17
	c.	 Heating - Cooling Control 1. Set Up 2. Switch Tests 3. Logic Tests 	G-18 G-18 G-18 G-19
IV.	Var	riations	G-20
v.	A. B. C. D.	cellaneous Condenser Water Pump Control North Limit Collector Position Indicator Flowmeter Operating Mechanism	G-21 G-21 G-21 G-21 G-21 G-21
VI.		<pre>intenance Periodic Maintenance 1. Operating Mechanism a. Screw Jack b. Receivers 2. Reflectors - Roof Panels 3. Controls 4. Piping - Flow Rates (Circuit Setters)</pre>	G-23 G-23 G-23 G-23 G-23 G-24 G-24 G-25

Operation and Maintenance Manual (Continued)

Reedy Creek Utilities Co., Inc.

CEP Solar Building

Title

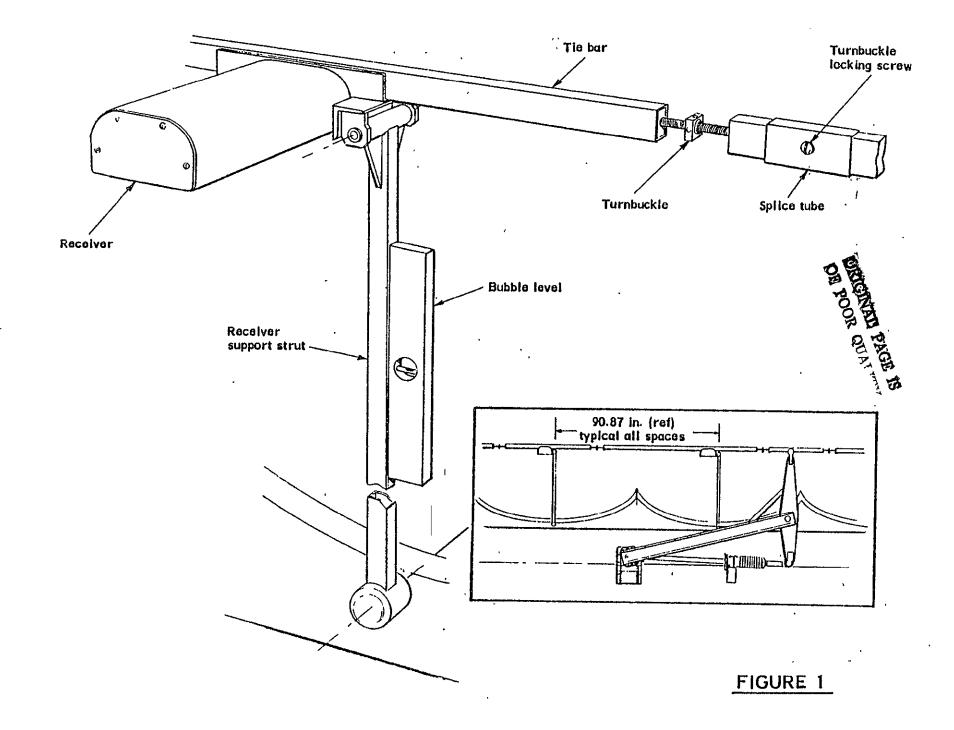
·

VI.	Maintenance (Continued)	
	B. Repair and Replacement Instructions	G-25
	1. General	G ∸ 25
	2. Operating Mechanism	G - 25
	Figure 4	G-28
	Figure 5	G-29
	Figure 6	G-30
	Figure 7	G-31
	· ·	

CAUTION

- o. The operating angular stroke of the receivers must not exceed 48° north of vertical or 42° south of vertical.
 - Damage to receivers will occur if absorber temperature goes above 320°F (overheat) or, with water in the system, below 32°F.
- Walking on the reflective surface of the roof without proper padding may cause cracked mirrors.
- If the system is shut down or the water flow
 to the collectors is interrupted, the receivers
 must be kept out of focus to prevent overheating.
- The system should be operated in automatic or off position. The manual position is for calibration only and by-passes the built-in safeties.

I. Operating Instructions


A. Initial Adjustments

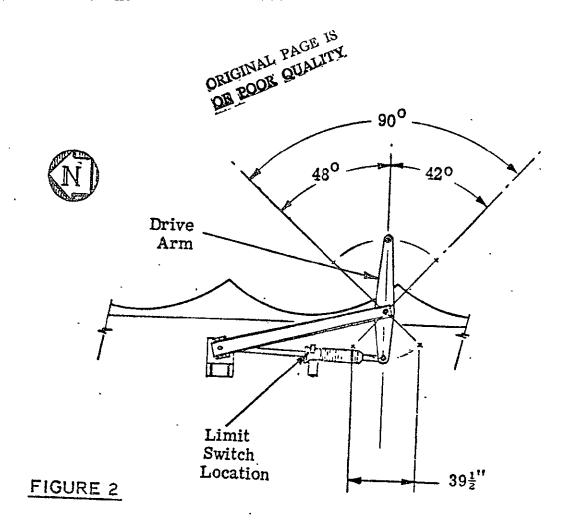
1. Receiver Focus

The receiver position should be checked with the drive arm in its vertical position. The drive arm can be oriented properly by using the temporary tooling strut as shown in Figure 1. Each receiver support can then be checked with a level to see that the receivers are also in the vertical position and that the parallelogram is properly aligned. This procedure is designed to provide a preliminary alignment of the receivers.

A turnbuckle type adjustment screw is located in the tie bar between each receiver as shown in Figure 1. The screw can be rotated to increase or decrease the tie bar length and hence the receiver spacing. The nominal distance between tie bar sections is three inches as shown in the figure. An adjustment travel of +two inches has been provided. It is important that the distance between tie bars not be allowed to exceed five inches. Adjustment beyond the five inch dimension will cause a decrease in the tie bar strength and a possible failure of that point. Adjustment to the receivers should begin at the building mid-point and continue outward to the north and south ends of the building. This is done because adjustment of the inner receivers also moves . all outer units on that side of center. After the adjustment has been completed, the outer splice tube is slipped over the turnbuckle to lock it in place. The locking screw then

• **G-**6

fastens the splice tube to the turnbuckle screw.


In order to achieve the maximum system performance it is important to insure that the receivers are adjusted properly with regard to the reflector focal point. This focal point varies in position, size, and density depending on the sun angle. The proper receiver adjustment, then, is the position at which the total absorbed heat over the complete operating stroke for the entire receiver array is at a maximum.

This can best be checked by noting the illuminated area on the underside of each of the receivers at various times of the day. If some or all of the units show a tendency for this illuminated area to favor one side or the other of the target (receiver glass) over the period of a full day's travel, then there is a need for further adjustment. If the amount of drift of the illuminated area from one side to the other is roughly equal and the losses on each side are about the same for each receiver at all sun angles, then the receivers can be considered properly focused.

G-8 '

2. Screw Jack

The screw jack drives the receiver array through the drive arm. The limit switches mounted on the screw jack motor should be set to insure proper travel of the drive arm. The travel for the arm should be 48° north of vertical and 42° south of vertical to provide a total stroke of 90°. This arm rotation will correspond to a screw jack stroke of 39-1/2". The proper travel is shown in the sketch below. Be sure to use the manufacturer's recommended procedure for adjustment of the limit switches.

3. Controls - Sun Sensor

In order to move the receiver array into the maximum focal point as the sun's angles change, the sun sensor is located on Receiver No. 1. The sensor is tied to the control console and has been adjusted with a separate written procedure.

This can best be checked by noting the illuminated area on the underside of each of the receivers at various times of the day. If the illuminated area favors one or the other, over a period of two full day's travel, then there is a need to recalibrate with the written procedure. When the amount of drift of the illuminated area from one side to the other is roughly equal and the losses on each side are about the same, the receivers can be considered properly focused.

4. Circuit Setters

In order to perform a hydronic system balance there is a circuit setter valve in the return from each receiver. Lack of balance of the system could starve the receivers farthest from the pump. Air trapped in any one receiver could cause inadequate flow to that receiver. It is, therefore, necessary that the pressure drop be checked at each receiver. In order to check this flow, an accurate pressure differential gage must be used. The actual value reading on the meter is not of major significance, but the same reading should be read at each receiver. If additional information is required, see Circuit Setter Valve Balance Procedures, HS-CS-671, Bell & Gossett, ITT.

G-10 ;

II. Calibration

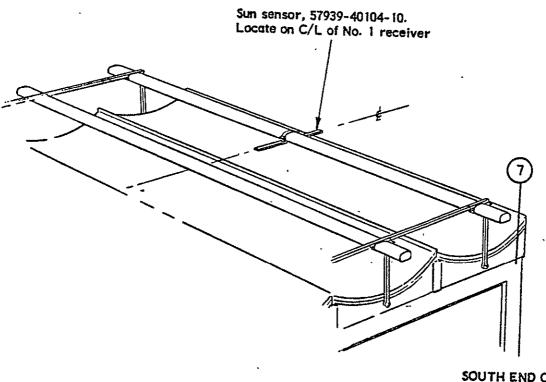
Prior to installation, the platinum resistance thermometers (PRT's, also referred to as RTD's) have been checked for R_{o} (resistance at zero degrees celsius) of 100 +0.1 ohms and at sufficient other temperatures to show they follow the Callendar-van Deusen temperature/resistance curve for .00392 platinum from 0°C to at least 130°C (266°F). In addition, the resistance bridge amplifiers have been calibrated using precision resistors in place of PRT's, and these resistances are within +.01% of nominal at 0°F, 32°F, 100°F, 212°F, 300°F, and 350°F. The readout linearizers have also been calibrated to compensate for the non-linear Callendar-van Deusen equation to reduce the readout error from a maximum of +3.06°F to a maximum of +0.2°F. Procedures for performing these calibrations are included in the handbook. With no additional system calibration or adjustments, all temperature readings should be within +1°F of the true temperature. The error can be reduced to less than 0.3°F by immersing the temperature sensors at the ends of their wire, runs in an insulated container of melting crushed ice made from low mineral content water, and adjusting the balance pot on the appropriate bridge amp circuit for zero volts out of the bridge amp, or a 32.00°F reading on the temperature readout. An alternate procedure yielding even greater readout accuracy is to immerse the PRT and a precision thermometer in a stirred fluid near 32.00°F and adjust the balance pot for equal readings; immerse them in a stirred fluid near 212°F and adjust the scale pot for

equal readings, and repeat the cold and hot immersion and adjustments until no adjustment is necessary, remembering that the PRT must be connected to its normal wire, and several minutes should be allowed between immersion in the stirred fluid and any adjustment.

The above and the delta T calibrations should be made on a periodic (six months or one year) basis, and if either the bridge power supply or the op amp power supply is replaced or reset to a voltage differing from that at calibration by more than 0.1%.

A. Sun Sensor

Insert extender card between sun follower amplifier and its socket. The extender card has three amber and four red LED indicators for three light levels and two N errors and two S errors. The bottom amber and two red lights are for the center photosensor.


Put the test panel meter switch in "Test Jack" position. Connect the upper meter to TP8 and ground, and the lower meter to the junction at R40, Cll, and R46 and ground. The top meter reads the inner sensors amplitude difference, and the bottom reads the negative of the sum of the voltage magnitudes. Put the collectors in focus by nulling the top meter. Start with all pots fully C.W. (all LEDs should be off). Note the sum voltage. Refocus the collectors about one foot north. Adjust R51 if necessary to keep the top meter positive from focus to one foot north. Run the sensor south. TP8 shall go thru zero

at focus and go negative for at least one foot south of focus. Stop south travel when the bottom meter shows -1.4V. Turn R49 CCW until the light level light just appears. Return sensor to near focus. When the top meter shows + or $-.13 \pm .02V$, turn R64 CCW until red error light just comes on. Run sensor north and south until level light goes out in each direction. Top meter shall always be positive when north of focus and negative when south of focus. Let the sensor automatically center from extremes of light level enable.

Move top meter to TPl and bottom meter to TP2. Start with sensor six inches north of focus. Run sensor to north limit, adjusting Rl if necessary to keep TPl at least $\pm 0.3V$. Verify that TPl is -0.3V or more from six inches south to the south limit. Put sensor just north of focus so that TPl is $\pm 0.15 \pm .2V$. Turn Rl8 CCW until red light just appears. Move sensor south (TPl thru null) and north red light shall go out, then south red light shall appear when TPl is $\pm .15 \pm .2V$. Put bar about six inches north of focus. Turn R28 CCW until amber light just comes on. Move to six inches south of focus and turn R35 CCW until its amber light just appears.

Wait for a cloud shadow to cover roof. All amber lights should go out. Turn R49, R28, or R35 CW as necessary to put amber lights out. TP2 monitors south level for information only.

Defocus bar to north and south limits in turn and verify automatic return to focus and proper tracking.

SOUTH END OF BUILDING

FIGURE 3

G-14 C-3

III. Systems Tests

A. Collector

1. Turn On and Focus

On a bright, sunny day, manually operate the collector pump with the collector out of focus to cool the collector to near 0 delta T (or negative). Operate the collector pump switch to "Automatic", and place the collector focus switch in "Automatic". Verify that the collector moves into focus. Monitor the four surface temperatures and the hot water tank bottom temperature. When the second surface temperature reaches $20 \pm 2^{\circ}F$ greater than the tank bottom, the collector command will light and the collector pump indicator will light and the collector pump shall start. Operate the collector pump switch to "Off" and the pump shall stop and the pump light extinguish. Return the pump switch to "Automatic" to restore the "On" condition.

2. Turn Off

After allowing the collector pump to operate until reasonably static conditions are reached, and focus corrections have been noted, and observing that the collectors stay in focus and do not get lost or run to a stop when clouds obscure the sun, operate the collector focus switch to "Manual" and move the collectors completely out of focus, observing delta T. When delta T decreases to $1 \pm .5$ °F, the collector pump command light and collector pump light shall extinguish and the collector pump shall turn off. Repeat the turn on off cycle and verify turn off cannot occur less than five

minutes after turn on.

3. Overheat

Return the collector focus switch to "Automatic" and observe the system during the turn on cycle. After the turn on transients have passed, place the collector pump switch in the "Off" position and monitor the four surface temperatures. When any surface temperature reaches $250 \pm 5^{\circ}$ F, the overheat light shall appear, the collector south travel light will come on, and the collector shall move south until the limit is reached and indicated by the appearance of the south limit light and extinguishing of the south travel light.

Return the collector pump switch to "Automatic". When the hottest collector surface is less than 245°F, press the overheat reset switch and watch the system return to normal operation.

In turn, disconnect the surface temperature PRT hot leads at the rear of the cabinet and connect a 200 ohms pot in place of it. Reset overheat, observe the simulated surface temperature as the pot is slowly increased from 100 ohms. When the simulated temperature reaches 250 ±5°F, the overheat light shall appear and the collector shall start to defocus. Reduce the simulated temperature below 245°F and press overheat reset to restore operating conditions. Disconnect the pot and reconnect the PRT leads. NOTE: The momentary open circuit will produce "Overheat", so the reset must be pressed after each time the circuit is open. Repeat for other three surface temperatures.

G-16 .

Perform this type test for the H.W. tank top thermometer circuit, noting overheat at a simulated 245 \pm 5°F and reset capability below 240°F.

Verify that reset is inoperative when the simulated temperature remains above the switch point value for surface or tank.

B. Chiller Control

1. Set Up

Replace the H.W. tank top PRT, and the C.W. tank top and bottom PRT's with 200 ohms potentiometers at the terminal strips in the back of the cabinet. Disconnect the output of the Arkla control relay and substitute a 115V 60Hz bulb for its load. Set H.W. tank top temperature to 165°F, C.W. tank top to 52°F, and C.W. tank bottom to 40°F. Ground the condenser flow switch input.

2. Switch Test

Verify that the H.W. pump and light are off with the H.W. pump switch in any position except "On", and are on in that position. Leave in "Automatic" position.

Repeat above for the Arkla switch and the C.W. pump switch.

3. Logic Test

Set C.W. tank bottom to 50°F and H.W. tank top to 180°F. Increase C.W. tank top temperature slowly from 52°F. Temperature at which H.W. pump, Arkla, and C.W. pump and their lights come on shall be 57 +3°F. Reduce C.W. tank

top to 52°F, and reduce C.W. tank bottom temperature. The three lights, two pumps, and simulated Arkla shall turn off at C.W. tank bottom at 45 +3°F.

Set H.W. tank top to $165^{\circ}F$, C.W. tank top to $60^{\circ}F$, and C.W. tank bottom to $50^{\circ}F$. Increase H.W. tank top until H.W. pump, C.W. pump, and Arkla lights come on. Temperature must be $175 \pm 3^{\circ}F$. Slowly reduce H.W. tank top and note turn off temperature which must be $170 \pm 3^{\circ}F$, and must also be $5 \pm 2^{\circ}F$ less than the previously noted turn on temperature.

Remove ground from condenser motor flow switch input, set H.W. tank top to 180° F, C.W. tank top to 50° F, and C.W. tank bottom to 50° F. Increase C.W. tank top temperature to 60° F. The H.W. pump, C.W. pump, and Arkla lights shall come on for 7 ± 2 seconds, then go out.

C. Heating - Cooling Control

1. Set Up

Replace the C.W. tank bottom PRT with a 200 ohms pot as previously used. Set the C.W. tank bottom temperature to 55°F.

2. Switch Tests

Disconnect the active wire to the "Fan On" PE switch. The heating demand, cooling demand, and the CEP demand lights shall be out and shall remain out as each of the two area PE switch inputs (T<70, T>74, and T>76) are shorted in turn. The corresponding pumps and CEP lights shall be lit only when its ON-OFF-AUTO switch is ON, and the function shall

also only then be active. Leave all switches in the AUTO position.

3. Logic Tests

Simulate a "Fan On" signal, or reconnect the "Fan On" switch if it is actuated. Disconnect the active leads of all six temperature PE switches. In turn, simulate closure of each 70°F and 74°F PE switch by shorting terminals on the back of the rack. Note that the proper heating or cooling demand light illuminates, and that the proper pump and pump light come on except when ON-OFF-AUTO switch is in OFF. Simulate closure of the area one >76°F PE switch. Slowly increase the simulated C.W. tank bottom temperature until the CEP demand light comes on. Record the time, the temperature shall be 60 \pm 3°F. With the AUTO-SOLAR-CEP switch in AUTO, the CEP light shall also come on and the solar extinguish. Remove the simulated closure on the area one >76°F PE switch. The lights shall revert to SOLAR ON, CEP OFF, only after 30 +2 minutes have elapsed since turn on. Simulate activator of area 2 >76°F PE switch and note action identical to the above for area one. Reconnect all switches and PRT's in their normal configuration. Remove dummy loads and reconnect Arkla, EP's, etc.

IV. Variations

If desired, a dummy load such as a light bulb may be used in place of any motor starter, EP switch, solenoid valve, etc., so long as the nature of the interface is not altered. Similarly, input signals from PE switches, flow switches, etc., may be simulated at will by open or closed circuit conditions corresponding to the actual condition being simulated.

The temperature at which an action takes place (e.g., $250 \pm 5^{\circ}F$) is usually selectable over a wide range, and central numbers are tentative. If desired, these can be set to any reasonable exact integral number during the course of this test, or during a repeat thereof, or the central number can be reset using the comparator calibration socket on the back panel.

V. Miscellaneous

Some additional controls, indicators, and interlocks are included as a convenience or for abnormal condition protection. Tests of these follow.

A. Condenser Water Pump Control

This switch provides a test means of the pump. Verify the pump will not run when "Off", runs when "On", and is controlled by the Arkla unit when "Automatic".

B. North Limit

Manually run the collectors north until the north travel light goes off and the north limit light comes on. Verify the screw jack motor is stopped.

C. Collector Position Indicator

Convenient indicator of collector position, with near 0 being north and near 80 to 100 being the south travel limit, a variable setting.

D. Flowmeter

The flowmeter itself is factory calibrated and delivers, from its accompanying electronics, +1V per 100 GPM. The front panel meter reads from 0 to 199.9 GPM.

E. Operating Mechanism

The screw jack and associated drive linkage should operate smoothly over the entire 90° stroke. Proper operation of the limit switches should be checked by insuring that the end stop positions of the drive arm are as described earlier

in section A.2. When the screw jack motor is stopped there should be no drift in the receiver position.

The receiver focus should be checked for all receiver positions as discussed in section A.1.

The torsion bar counterbalance for the receiver array relies on a friction clamp to transmit torque from the torsion bar to the channel assembly. To insure that this friction clamp is not slipping, the following check should be made. With the drive arm in the vertical position, an index mark should be placed on the torsion bar and a matching mark on the friction clamp collar. The receiver array should then be run to the north stop, 48° off the vertical. If the index marks are still in line, then the torsion bar is working properly.

VI. Maintenance

A. Periodic Maintenance

1. Operating Mechanism

a. Screw Jack

The screw jack should be lubricated once a year. The grease fitting is located on the underside of the housing. If for any reason the motor housing is opened, a new bead of caulk must be applied to provide a weather seal for the motor.

b. Receivers

The glass covers on the underside of the receivers should be checked periodically to see that they are clean and also to insure that no residue has accumulated on the inside of the glass. It is not anticipated that cleaning of the receiver glass will be necessary, but an occasional inspection will prevent a deterioration of efficiency due to residue accumulation.

Each receiver is equipped with an air bleed valve at the highest point in the line. This valve is located on the east end of each receiver inside the end plate. If air accumulation in the absorber is suspected, the following procedure should be used. Remove the end plate on the east (loop) end of the receiver (four screws hold this plate on). Unfold the flex line and open the bleed valve until the trapped air has been released. The flex line is provided to prevent water from getting inside the receiver while bleeding the line. Replace the hose and the end plate. The end plate must be

caulked in place to provide a weather-tight seal.

The receiver focus should be checked periodically. This procedure is described in section I.A.l of this report.

2. Reflectors - Roof Panels

All exposed external edges of the laminated roof panel sandwich should be protected from exposure to the weather. Each end of each roof panel should be checked to insure that it is properly caulked and painted to prevent any deterioration of the adhesive bond between the foam core and the aluminum skins.

Cleaning of the reflector surface is not usually necessary. During extended dry spells or exceptionally dusty or dirty conditions it may be necessary to hose off the roof mirrors to afford maximum performance of the collectors.

When walking on the mirrored surface for maintenance or inspection of the system it is recommended that foam padding be used to prevent the mirrors from cracking. The polystyrene bead board packing material that was used for shipment of the roof panels works very well for this purpose. A block of the polystyrene four or five inches thick can be layed on the mirrors or taped directly to the feet of anyone wishing to walk out on the roof.

3. Controls

It is necessary that the control calibration procedure (Page 7) be used for recalibration periodically (six months or one year as required). The control cabinet

should be checked for surface corrosion and deterioration every six months. Several RTD weather caps should be checked for moisture and deterioration in the thermowell.

4. Piping - Flow Rates (Circuit Setters)

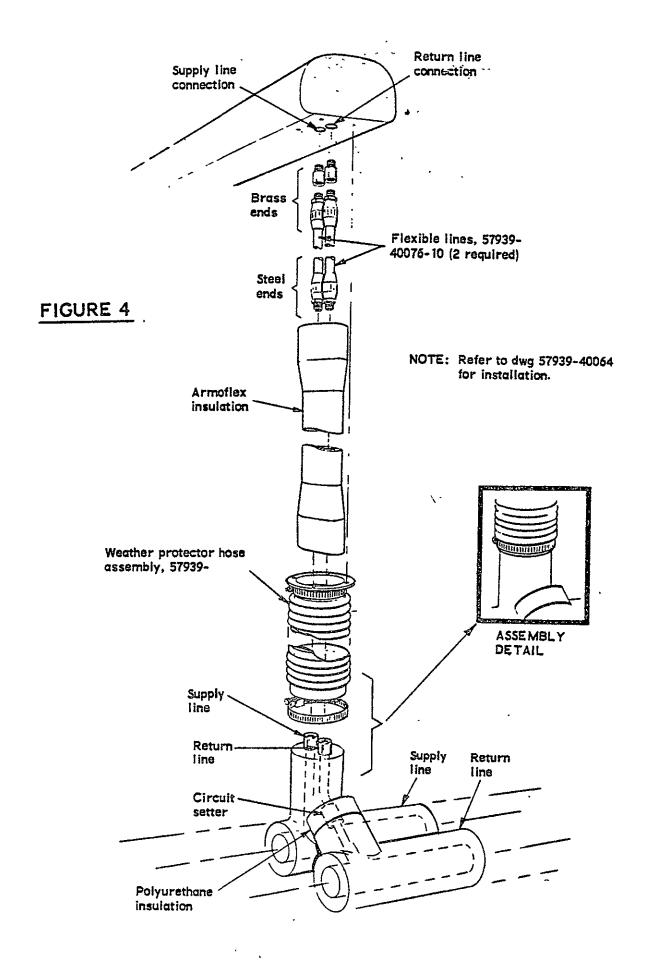
The insulated cover on the circuit setters should be removed yearly to check for leaks. At the same time, the pressure drop through each circuit setter should be checked using the procedure on Page G-10.

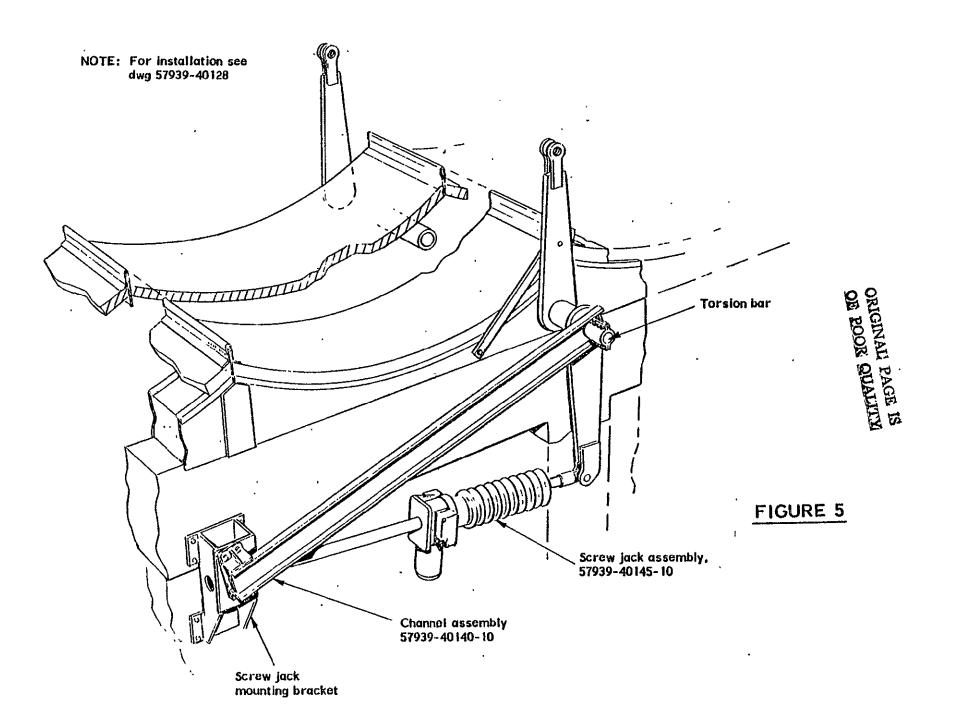
B. Repair and Replacement Instructions

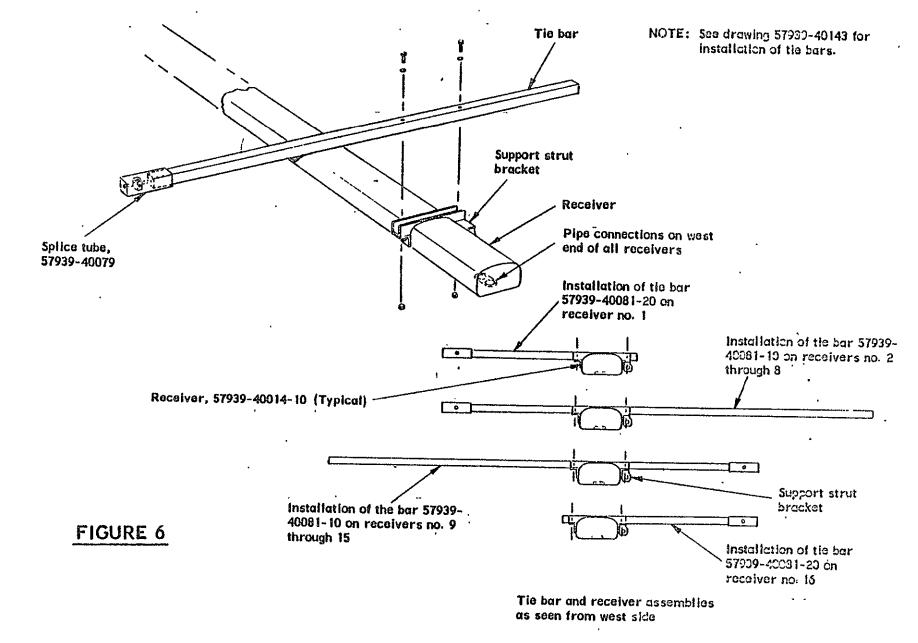
l. General

Any repair work on the system should be done only in accordance with the manufacturer's recommended procedure for the particular item in question. AAI's report No. ER-9008, "Solar System Assembly and Installation Instructions" can be used as a guide for repair of the basic operating mechanism and roof assembly. Any questions regarding items not covered or not clearly defined either here or in the above mentioned installation instructions should be directed to AAI Corporation's solar engineering department.

2. Operating Mechanism


If it becomes necessary to disassemble any portion of the drive mechanism (including tie bars and receivers), two things must always be considered beforehand. First, if the water flow is stopped, the receivers must <u>not</u> be allowed to remain in the focus position for more than a minute or so. Provisions must be made to run water through the receivers or


to keep the receivers out of focus during the repair period. Secondly, it must be remembered that the drive mechanism is in a "spring loaded" condition at all positions other than the vertical due to deflection of the torsion bar. Disassembly should be attempted only after these items have been given proper attention.


If work must be done on one particular receiver, it can be disconnected and repaired on the building roof, or on the ground if extensive repair is required, without disrupting the rest of the system. Receivers should be removed one at a time only and the drive arm should remain in the vertical position while the receiver is out. This must be done because of the increased length of the unsupported tie bar and the possibility of buckling if a compression load is applied. Four 3/8" bolts hold the receiver to the tie bar. Two 1" diameter pivot pins connect the receiver to the receiver supports. The flex line on the west end is the only other connection point for the receiver. By laying 2 x 10's across the peaks of the roof panel near each end, the receiver can be layed on its back, with the water lines still connected, to replace glass or for other minor repairs. To remove the receiver to the ground, the flex lines must be disconnected and plugged to allow water flow thru the rest of the system. The approximate weight of one receiver is 320 lb.

If the screw jack is to be disconnected, the receiver array must be held in position by another means. The temporary tooling strut supplied by AAI can be used for this

purpose. The tooling strut will lock the drive arm in the vertical position. The receivers will not be in focus in this position during the fall and winter months (Sept. 21 thru March 21). During the spring and summer, however, this is a focus position and the tooling strut, therefore, should be used only if water is running in the system.

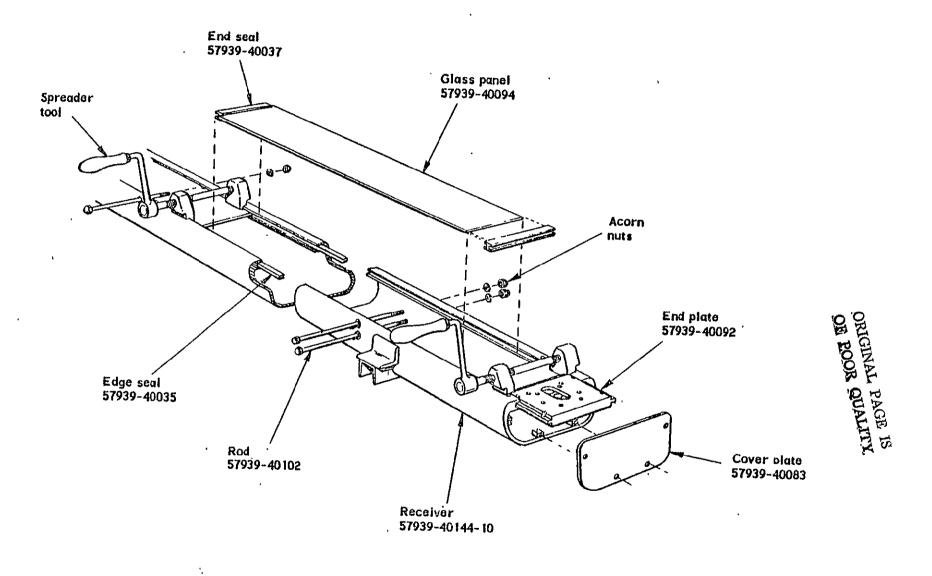


FIGURE 7

G-31

.